平行线的性质教案9篇。
资料的意义非常的广泛,可以指需要查到某样东西所需要的素材。当一次学习即将开始时,我们通常会接触到一些资料。资料可以作为参考给我们一些学习工作灵感。那么,想必你在找可以用得到的资料吧?经过小编精心整理,推出平行线的性质教案9篇,强烈建议你能收藏本页以方便阅读!
平行线的性质教案(篇1)
教学目标
1.使学生理解平行线的性质和判定的区别.
2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点难点
重点:平行线的三个性质.
难点:平行线的三个性质和怎样区分性质和判定.
关键:能结合图形用符号语言表示平行线的三条性质.
教学过程
一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?
2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图进行实验观察.
设l1∥l2,l3与它们相交,请度量1和2的大小,你能发现什么关系?
请同学们再作出直线l4,再度量一下3和4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等.
2.演绎推理,发现平行线的其它性质
(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.
求证:1= 2.
(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.
求证:2=180.
在此基础上指出:平行线的性质2 (定理)和平行线的性质3 (定理).
3.平行线判定与性质的区别与联系
投影:将判定与性质各三条全部打出.
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的.条件和结论是互逆的,性质与判定要证明的问题是不同的.
三、例题
例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.
此题一定要强调,哪两条直线被哪一条直线所截.
答:相等的角为:2,4,6,8.互补的角为:BAC+ACD=180,ABD+CDB=180,CAB+DBA=180,ACD+BDC=180.
相等的角还有:ACD=ABD,BAC=BDC.(同角的补角相等)
例3如图所示.已知:AD∥BC,AEF=B,求证:AD∥EF.
分析:(执果索因)从图直观分析,欲证AD∥EF,只需AEF=180,
(由因求果)因为AD∥BC,所以B=180,又AEF,所以AEF=180成立.于是得证.
证明:因为 AD∥BC,(已知)
所以 B=180.(两直线平行,同旁内角互补)
因为 AEF=B,(已知)
所以 AEF=180,(等量代换)
所以 AD∥EF.(同旁内角互补,两条直线平行)
四、练习:
1.如图所示,已知:AE平分BAC,CE平分ACD,且AB∥CD.
求证:2=90.
证明:因为 AB∥CD,
所以 BAC+ACD=180,
又因为 AE平分BAC,CE平分ACD,
所以 , ,
故 .
即 2=90.
(理由略)
2.如图所示,已知:2,
求证:4=180.
分析:(让学生自己分析)
证明:(学生板书)
小结
我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
1.如图,AB∥CD,1=102,求2、3、4、5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果B=40,2=75,那么1、3、C、BAC+C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180?已知AB∥CD,可以得到哪些角相等?并简述理由.
5.3平行线性质(二)
[教学目标]
经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力
理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论
能够综合运用平行线性质和判定解题
[教学重点与难点]
重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念
难点:平行线性质和判定灵活运用
[教学设计]
一.复习引入
1.平行线的判定方法有哪些?
2.平行线的性质有哪些?
3.完成下面填空
已知:BE是AB的延长线,AD//BC,AB//CD,若 则
4. 那么a,c的位置关系如何?
二.新课
1.例1,已知a//c, 直线b与c垂直吗?为什么?
例2如图是一块梯形铁片的残余部分,量得 ,梯形另外两个角分别是多少度?
2.实践 与探究
(1)学生操作:用三角尺和直尺画平行线,做成一张
个格子的方格纸。观察并思考:做出的方格纸的一部分,
线段 都与两条平行线 垂直
吗?它们的长度相等吗?
教师给出两条平行线的距离定义:同时垂直于两条平行线,
并且夹在这两条平行线间的线段长度叫做两条平行线的距离。
问题:AB//CD,在CD上任取一点E,作 垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?
结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3.命题和它的构成
下列语句,分析语句的特点
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。
(2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式
(4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出是或不是的判断
命题:判断一件事情的句子,叫做命题
(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成如果,那么的形式,
三.巩固练习
1.等式两边乘以同一个数,结果仍是等式是命题吗?如果是,它的题设和结论分别是什么?
2举出一些命题的例子
四.作业
平行线的性质教案(篇2)
一、教材分析
教材的地位和作用
《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
教学重难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、教法、学法
教法:
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
学法指导:
通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、教学过程
1、创设情境引入
在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。
前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等、
性质2:两直线平行,内错角相等、
性质3:两直线平行,同旁内角互补、
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识小组交流20页例题
(4)完成导学案上课堂练习
【设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、课堂检测
完成导学案上课堂检测习题
设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。
6、作业设计
P24第4、12题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1:例题:练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
平行线的性质教案(篇3)
[教学目标]: 1、结合生活情景,感知平面上两条直线的平行关系,认识平行线。 2、学生通过自主探索和合作交流,学会用合适的方法创造一组平行线,能借助工具画出已知直线的平行线。 3、使学生经历从现实空间中抽象出平行线的过程,培养空间观念。 4、在数学活动中让学生感受到数学知识在生活中的真实存在,增强学生对数学的兴趣,养成独立思考的习惯,培养应用数学的意识。 [教具、学具准备]: 直尺、三角板、铅笔、方格纸、小棒若干 [教学过程]: 一、活动激趣、引入新课 1、学生同桌之间,玩玩小棒。观察每两根小棒落地后形成的图形 2、让学生记录下活动中形成的图形,然后投影展示 3、有选择的选取其中的几种预先设计在电脑里,让学生把下面的四种情况分分类,让学生可以用自己的语言来解释为什么这样分类,第一次初步感觉相交和不相交。 ① ② ③ ④ 4、如果把这两条线段想象成直线,会出现什么样的情况,先在脑子里面想象一下;然后再说一说 5、电脑演示延长的过程: 观察后第二次分类,说说为什么与刚才的分类不同。 6、学生的回答中提炼相交与不相交的概念。 [设计意图]:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”在教学时,我充分利用活动情境,根据学生已有知识基础和生活经验,通过认真观察、独立思考,在具体的活动中提出问题,解决问题。让所有学生都参与数学活动,让学生在观察、活动中探索,经历学习的过程,愉快地、自主地学习。 二、结合生活、展开教学 1、出示书上情景图,让学生观察后思考:这些画面在哪里见到过,找一找相交的直线和不相交的直线。 2、阴去图片留下红色和兰色的直线,让学生再次感受平面上两直线的位置关系,用手比画它们的位置关系,为提炼互相平行的概念做准备。 3、提炼概念:像刚才我们认识的生活中的跑道线、秋千等这样的在同一平面内,永远不会相交的两条直线叫做互相平行,其中一条直线是另一条直线的平行线。 为了帮助学生理解这一抽象的概念我设计如下几个小环节: ①对这句话的理解有困难的同学可以提出来大家一起讨论。 ②针对“同一平面内”进行阐述,我们现阶段学习的图形都是平面上,老师可以借助实物,如:利用教室中墙壁上的线段来帮助理解同一平面和不同平面内的直线的位置关系。 ③理解“其中一条直线是另一条直线的平行线”利用一组平行线让学生说说他们的关系。如:直线A是直线B的平行线。 4、头脑中对互相平行有了一定的概念以后让学生闭上眼睛想一想,让学生对新知识有一个认知的时间和空间的过程。 5、回归生活,找找在生活里见到过相互平行的线。 6、学会判断:完成想想做做1,在图中找出哪些线是相交的,哪些线是平行的 7、想想做做2,会找出学过的平面图形中互相平行的线,各有几组。 [设计意图]:这个环节的设计,注重学生生活经验的感受,让学生在已有的经验中进行建构,力图使学生从生活经验和客观事实出发,在研究现实问题的.情景中学习数学、理解数学和发展数学。 三、操作实践、创新应用 1、让学生想办法创造出一组平行线。 2、学生介绍自己的创作过程(注意培养学生解决问题策略的多样化)。 3、结合学生介绍的方法,老师有意识的提出问题:如果要画一组间隔是10厘米的平行线,或者更宽、更窄的平行线,我们的直尺没有那么宽,方格纸也没有正好是间隔10厘米,该怎么办?设置问题,学生利用已有经验难以解决问题时,这时让学生打开书自学40页上的方法。 4、自学后说说用直尺和三角板怎样来画出任意的一组平行线。 5、提炼方法:一、画(线) 二、靠(直尺) 三、平移 6、自由用这种方法画出一组平行线,再说说画的方法 7、试一试1:画出已知直线的平行线 8、试一试2:经过点A分别画出已知直线的平行线 综合操作1:你会用画平行线的方法,把下面的图形画成一个长方形吗? [设计意图]:通过操作活动,折折,画画,摆摆,说说,采用个体探索 小组讨论集体交流的教学模式,引导学生自主地去认识互相平行,变传统的平行线的认识为现在的认识平行,实现了课堂教学从封闭型到开放型的转化,为学生的思维提供了广阔的空间。这样,不仅充分调动了学生学习的积极性和主动性,使他们真正参与到认识平行的过程,从而深刻理解其特征,而且培养了创新意识,发展了思维。 四、全课总结(略) 教学反思: 这课是学生初次接触学习习近平行知识,在本课学习以前,学生在实际生活中已积累了许多这些方面的经验。贾老师通过找一找、说一说、玩一玩等实践活动。让学生体验学习数学的乐趣,激发学生积极探索新知和学好数学的欲望的同时培养学生初步的观察、想象、交流与表达,发展学生的空间观念;并提供探索的时间与空间,培养了学生的探索精神和协作意识。 在教学设计中,当学生研究了互相平行的特征后,就让学生用自己的方法创造一组平行线,这样的教学有利于培养学生的个性,照顾到学生的差异。在课的最后一部分“利用新知,解决问题”这个环节中,不仅练习的形式多样,注重基础知识和基本技能的落实和空间观念的培养,而且教师设计的问题具有层次性,这样的教学突出了因材施教,关注了学生的差异,较好的体现了《标准》中“不同的人在数学上得到不同的发展”这一数学理念。
平行线的性质教案(篇4)
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习5
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业6
P25.1、2、3
〖补充作业7
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
平行线的性质教案(篇5)
教学目的:
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点:
1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程:一、巩固旧知,问题引入.巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论 在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题.二、实验验证,探索特征.
1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)
(1)已知,a//b,任意画一条直线c与平行线a、b相交.
(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系
3、实验结论:
两条平行线被第三条直线所截,同位角相等.
简记为“两直线平行,同位角相等”
识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?
4、问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢
如图,已知直线a//b,思考∠1与∠2、∠2与∠3之间有什么关系?为什么?
“两直线平行,同旁内角互补”
(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同.)
例:如图,ad∥bc,ab∥dc,∠1=100º,求∠2,∠3的度数
(二)做一做:如图,一束平行光线ab与de射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线bc与ef也平行吗?
先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由.
(三)考考你:
如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠a=115º,∠d=100º.已知梯形的两底ad//bc,请你求出另外两个角的度数.
(四)填空:
已知:如图,∠ade=60º,∠b=60º,∠c=80º.
问∠aed等于多少度?为什么?
∴de//bc(_______________________________________)
∴∠aed=∠c=80º(____________________________________)
四、课堂小结:
1、说说平行线的三个性质是什么?
2、平行线的性质与平行线的判定的区别:
3、证平行,用判定;知平行,用性质.
平行线的性质教案(篇6)
本节课是-第二学期开学第一周笔者在一农村中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为人教版义务教育课程标准实验教科书七年级数学(下册)。
本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容――探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活・数学”、“活动・思考”、“表达・应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考: 在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
3、解决问题: 通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
1、播放一组幻灯片。
内容: ① 供火车行驶的铁轨上; ② 游泳池中的泳道隔栏;③ 横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答――① 同位角相等两直线平行; ② 内错角相等两直线平行; ③ 同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2 探索平行线的性质(板书)
教师提要求,学生实践操作:任意画出两条平行线( a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线 d,看你的猜想结论是否仍然成立?
3.教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究 ----小组讨论----成果展示。
教师展示:
平行线性质2:两条线被第三条直线所截,内错角相等。(两直 线平行,内错角相等)
平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两 直线平行,同旁内角互补)
这节课你有哪些收获?
2、教师补充总结:
⑴ 用“运动”的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵ 用数形结合的方法来解决问题 ; (如我们前面将同位角测量后分析问题)
⑶ 用准确的语言来表达问题;(如平行线的性质1、2、3的.表述)
⑷ 用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
学习与评价P5 1、2、3(填空);
七、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。
这节课的教学实现了三个方面的转变:
① 教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。
② 学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。
③ 课堂氛围的转变:整节课以 “流畅、开放、合作、‘隐'导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
平行线的性质教案(篇7)
一、教材分析:
1.地位与作用:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
2.在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截同位角相等内错角相等同旁内角互补可以判定两条直线平行,那么两条平行线被第三条直线所截同位角内错角同旁内角之间会有什么关系呢学生有进一步探究的愿望和能力。
二、教学目标的确定:
根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
(1)探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。
(2)通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
(3)通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
三、教学重点、难点分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定
本节课的重点为:探究平行线的性质.
由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定
本节课的难点为:明确平行线的性质和判定的区别
四、教法与学法
1.教法:采用引导发现法,教师通过精心设置的一个个问题链,激发学生的求知欲,使学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。引导学生观察动手测量,猜想小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.
2.学法:在教师的引导下,学生通过观察、动手测量、猜想、小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
五、教学过程设计
本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.
〈一〉创设情境激发兴趣
出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶拐弯后上公路c又同向行驶。
(1)如果公路c与公路a的交角为700那么公路c与公路b的交角是多少度呢?
(2)如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?
设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
〈二〉探究新知实验猜想
问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?
学生首先独立完成
问题1 ,鼓励学生运用多种方法进行探索,在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.
设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?
学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:
(1)用量角器进行度量;
(2)通过剪纸拼图进行比较.
鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.
问题3:试将你发现的结论用自己的语言叙述出来。
设计意图:探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—独立思考—合作交流—得出猜想的探究过程,突出重点.锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
〈三〉归纳性质说理证明
1.平行线的性质
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
设计意图:在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.
2.试一试用符号语言表达上述三个性质.
学生独立思考回答,教师组织学生互相补充,并出示准确形式.
如图
性质1.∵ a∥b(已知),
∴∠1=∠2.(两直线平行,同位角相等)
性质2.∵ a∥b,(已知)
∴ ∠2=∠3(两直线平行,内错角相等).
性质3.∵ a∥b(已知),
∴ ∠5+∠6=180o.(两直线平行,同旁内角互补)
设计意图:帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.
问题4.你能根据平行线的性质1说出性质2、3成立的道理吗?
例如:如图,
∵ a∥b,
∴ ∠1=∠2.
又∵ ∠3= ,(对顶角相等)
∴ ∠2=∠3.
类似的,对于性质3请写出推理过程.
学生观察图,独立思考填空.此处将由性质1推导性质2的过程以填空的形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生独立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.
设计意图:引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作逐步培养学生的推理能力.
4.对比平行线的判定方法和性质,你能说出它们的区别吗?
学生独立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.
设计意图:这是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.
〈四〉应用新知巩固练习
例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
学生思考、尝试运用符号语言进行推理。老师适度点拨,并根据学生的解题情况板书规范的说理过程。
设计意图:应用平行线的性质3来解决问题,巩固平行线的性质,提高学生分析问题解决问题的能力。
课堂练习:
1.如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?
2.如图2,填空:
①∵ ED∥AC(已知)
∴ ∠1=∠C( )
②∵ AB∥DF(已知)
∴ ∠3=∠ ( )
③∵ AC∥ED(已知)
∴ ∠ =∠ (两直线平行,内错角相等)
3.如图3,∠1+∠2=180o,∠3=108o,求∠4的度数.
设计意图:第1题直接利用平行线的性质来计算巩固概念;第2题从不同角度应用性质,强化重点知识的理解;第3题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.
〈五〉归纳小结布置作业
课堂小结:
1.今天我们学习了平行线的性质:
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
2.平行线的性质和判定的区别与联系
条件结论
判定
性质
3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.
布置作业:
P22:2,3,4
六、教学评价
本节课从学生感兴趣的实际问题引入课题,在各个环节的上都设计成一个个的问题,使学生能围绕问题展开思考,讨论,进行学习。在设计上,强调自主学习,注重合作交流,让学生与学生的交流合作在探究过程中进行,使他们通过动手实践,观察分析,合理猜想,合作交流解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。
以上是我对本节课的设计和说明,请各位同仁批评指正,谢谢大家!
平行线的性质教案(篇8)
一、教材分析
1、教材的地位与作用
《平行线的性质》是华师大版七年级数学上册第四章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过农远资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。
2、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
3、学生情况分析
我所在的学校是少数民族农村中学,这里的学生基础知识较差,但学生有较强的求知欲望,对新的事物有很强的好奇心。学生对于平行线也有了很深的了解,已经学会了平行线的判定方法,所以本节课对学生来说不是非常难学。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、说教法、学法
新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、新技术教学法:在教学过程中充分利用农远资源和多媒体教学技术,给学生以直观的感受,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、说教学过程
1、创设情境引入
(1)我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5
(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。
(4)练习P174—175 第1、2、3、4题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计
P175 第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1: 例题: 练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
六、效果预测
本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强。
平行线的性质教案(篇9)
《7.4平行线的性质》教案
教学目标:
知识与技能目标:
1.探索并掌握平行线的性质;
2.能用平行线的性质定理进行简单的计算、证明.
过程与方法目标:
1.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算;
2.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
情感态度与价值观目标:
1.通过对平行线性质的探究,使学生初步认识数学与现实生活的密切联系,体会科学的思想方法,激发学生探索创新精神.
l 重点:
1.平行线性质的研究和发现过程;
2.平行线性质的简单运用.
难点:
正确区分平行线的性质和判定.
l 教学流程:
一、情境引入
平行线的判定方法是什么?
1、同位角相等,两直线平行.
2、内错角相等,两直线平行.
3、同旁内角互补,两直线平行.
反过来,如果两条直线平行,同位角、内错角、同旁内角各有什么关系呢?
如图,直线a与直线b平行.
如图,直线a与直线b平行,被直线c所截.测量这些角的度数,把结果填入下表内.
7.4平行线的性质:例题与讲解
1.平行线的性质公理
平行线的性质公理:两条平行线被第三条直线所截,同位角相等.简单记为:两直线平行,同位角相等。
证明命题的一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;(4)检查证明过程是否正确完善。
7.4平行线的性质同步测试
1.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )
A.120° B.110° C.100° D.80°
2.如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为( )
A.70° B.100° C.110° D.120°
3.如图,在△ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为( )
A.60° B.65° C.70° D.75°
4.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )
A.122° B.151° C.116° D.97°
dg15.com扩展阅读
平行线的性质教案锦集
希望阅读“平行线的性质教案”能够为您解答一些疑虑,同时能够对您的生活和工作有所帮助。在教学中,编写好教案课件是老师上好课的基础,每位老师都应该认真对待编写教案课件的工作。毫无疑问,教案是提高课堂教学效果的关键因素之一。
平行线的性质教案【篇1】
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).
1.如图1,
(1)∵ (已知),∴ ( ).
(2)∵ (已知),∴ ( ).
(3)∵ (已知),∴ ( ).
2.如图2,(1)已知 ,则 与 有什么关系?为什么?
(2)已知 ,则 与 有什么关系?为什么?
图2 图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?
学生活动:学生口答第1、2题.
师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:
[板书]2.6 平行线的性质
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考.
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书]两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
教师根据学生回答,给予肯定或指正的同时板书.
[板书]∵ (已知),∴ (两条直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等.
简单说成:西直线平行,内错角相等.
师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.
师生共同订正推导过程和第三条性质,形成正确板书.
[板书]∵ (已知),∴ (两直线平行,同位角相等).
∵ (邻补角定义),
∴ (等量代换).
即:两条平行线被第三条直线所截,同旁内角互补.
简单说成,两直线平行,同旁内角互补.
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)
尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):
如图7,已知平行线 、 被直线 所截:
(1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?
【教法说明】练习目的是巩固平行线的三条性质.
变式训练,培养能力
完成练习(出示投影片3).
如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.
【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的.同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.
[板书]解:∵ (梯形定义),∴ , (两直线平行,同旁内角互补).∴ .∴ .
变式练习(出示投影片4)
1.如图9,已知直线 经过点 , , , .
(1) 等于多少度?为什么?
(2) 等于多少度?为什么?
(3) 、 各等于多少度?
2.如图10, 、 、 、 在一条直线上, .
(1) 时, 、 各等于多少度?为什么?
(2) 时, 、 各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式.
【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.
(四)总结、扩展
(出示投影片1第1题和投影片5)完成并比较.
如图11,
(1)∵ (已知),
∴ ( ).
(2)∵ (已知),
∴ ( ).
(3)∵ (已知),
∴ ( ).
学生活动:学生回答上述题目的同时,进行观察比较.
师:它们有什么不同,同学们可以相互讨论一下.
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.
【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.
巩固练习(出示投影片7)
1.如图12,已知 是 上的一点, 是 上的一点, , , .(1) 和 平行吗?为什么?
(2) 是多少度?为什么?
学生活动:学生思考、口答.
【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.
八、布置作业
(一)必做题
课本第99~100页A组第11、12题.
(二)选做题
课本第101页B组第2、3题.
作业答案
A组11.(1)两直线平行,内错角相等.
(2)同位角相等,两直线平行.两直线平行,同旁内角互补.
(3)两直线平行,同位角相等.对顶角相等.
12.(1)∵ (已知),∴ (内错角相等,两直线平行).
(2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).
B组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).
∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .
3.平行线的判定与平行线的性质,它们的题设和结论正好相反.
平行线的性质教案【篇2】
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
1. 两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
2. 两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
3 . 两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
平行线的性质: 1. 两条平行线被第三条直线所截,同位角相等.
2. 两条平行线被第三条直线所截,同旁内角互补.
3 . 两条平行线被第三条直线所截,内错角相等.
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
2
平行线的性质教案【篇3】
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习了平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).
1.如图1,
(1)∵ (已知),∴ ( ).
(2)∵ (已知),∴ ( ).
(3)∵ (已知),∴ ( ).
2.如图2,(1)已知 ,则 与 有什么关系?为什么?
(2)已知 ,则 与 有什么关系?为什么?
图2 图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?
学生活动:学生口答第1、2题.
师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:
[板书]2.6 平行线的性质
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考.
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书]两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
教师根据学生回答,给予肯定或指正的同时板书.
[板书]∵ (已知),∴ (两条直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等.
简单说成:西直线平行,内错角相等.
师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.
师生共同订正推导过程和第三条性质,形成正确板书.
[板书]∵ (已知),∴ (两直线平行,同位角相等).
∵ (邻补角定义),
∴ (等量代换).
即:两条平行线被第三条直线所截,同旁内角互补.
简单说成,两直线平行,同旁内角互补.
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)
尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):
如图7,已知平行线 、 被直线 所截:
(1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?
【教法说明】练习目的是巩固平行线的三条性质.
变式训练,培养能力
完成练习(出示投影片3).
如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.
【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.
[板书]解:∵ (梯形定义),∴ (两直线平行,同旁内角互补).∴ .∴ .
变式练习(出示投影片4)
1.如图9,已知直线 经过点
(1) 等于多少度?为什么?
(2) 等于多少度?为什么?
(3) 、 各等于多少度?
2.如图10, 在一条直线上,
(1) 时, 各等于多少度?为什么?
(2) 时, 各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式.
【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.
(四)总结、扩展
(出示投影片1第1题和投影片5)完成并比较.
如图11,
(1)∵ (已知),
∴ ( ).
(2)∵ (已知),
∴ ( ).
(3)∵ (已知),
∴ ( ).
学生活动:学生回答上述题目的同时,进行观察比较.
师:它们有什么不同,同学们可以相互讨论一下.
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.
【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.
巩固练习(出示投影片7)
1.如图12,已知 是 上的一点, 是 上的一点,
(1) 和 平行吗?为什么?
(2) 是多少度?为什么?
学生活动:学生思考、口答.
【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.
八、布置作业
(一)必做题
课本第99~100页A组第11、12题.
(二)选做题
课本第101页B组第2、3题.
作业答案
A组11.
(1)两直线平行,内错角相等.
(2)同位角相等,两直线平行.两直线平行,同旁内角互补.
(3)两直线平行,同位角相等.对顶角相等.
12.
(1)∵ (已知),∴ (内错角相等,两直线平行).
(2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).
B组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).
∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .
13.平行线的判定与平行线的性质,它们的题设和结论正好相反.
平行线的性质教案【篇4】
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的'根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业
P25.1、2、3
〖补充作业
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
平行线的性质教案【篇5】
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习5
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业6
P25.1、2、3
〖补充作业7
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
平行线的性质教案【篇6】
一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容。
试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等。这个结论是否具有一般性呢?
试验2:学生试验(发印制好的平行线纸单)。
(1)要求学生任意画一条直线c与直线a、b相交;
(2)选一对同位角来度量,看看这对同位角是否相等。
学生归纳:两条平行线被第三条直线所截,同位角相等。
二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识。
活动1
问题讨论:
我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角。我们已经知道“两条平行线被第三条直线所截,同位角相等”。那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答)。
教师活动设计:引导学生讨论并回答。
学生口答,教师板书,并要求学生学习推理的书写格式。
活动2
总结平行线的性质。
性质2:两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3:两条平行直线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
平行线的性质教案【篇7】
一、教材分析:
1.地位与作用:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
2.在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截同位角相等内错角相等同旁内角互补可以判定两条直线平行,那么两条平行线被第三条直线所截同位角内错角同旁内角之间会有什么关系呢学生有进一步探究的愿望和能力。
二、教学目标的确定:
根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
(1)探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。
(2)通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
(3)通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
三、教学重点、难点分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到.这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的认识和理解,培养学生多方面的能力.因此我确定
本节课的重点为:探究平行线的性质.
由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆.因此,我确定
本节课的难点为:明确平行线的性质和判定的区别
四、教法与学法
1.教法:采用引导发现法,教师通过精心设置的一个个问题链,激发学生的求知欲,使学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。引导学生观察动手测量,猜想小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.
2.学法:在教师的引导下,学生通过观察、动手测量、猜想、小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点.逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
五、教学过程设计
本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业.
〈一〉创设情境激发兴趣
出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶拐弯后上公路c又同向行驶。
(1)如果公路c与公路a的交角为700那么公路c与公路b的交角是多少度呢?
(2)如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?
设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
〈二〉探究新知实验猜想
问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?
学生首先独立完成
问题1 ,鼓励学生运用多种方法进行探索,在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动.
设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?
学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:
(1)用量角器进行度量;
(2)通过剪纸拼图进行比较.
鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.
问题3:试将你发现的结论用自己的语言叙述出来。
设计意图:探究平行线的性质是本节课的教学重点,让学生充分经历动手操作—独立思考—合作交流—得出猜想的探究过程,突出重点.锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
〈三〉归纳性质说理证明
1.平行线的性质
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
设计意图:在学生合作交流后,教师归纳并板演平行线的性质,规范文字语言.
2.试一试用符号语言表达上述三个性质.
学生独立思考回答,教师组织学生互相补充,并出示准确形式.
如图
性质1.∵ a∥b(已知),
∴∠1=∠2.(两直线平行,同位角相等)
性质2.∵ a∥b,(已知)
∴ ∠2=∠3(两直线平行,内错角相等).
性质3.∵ a∥b(已知),
∴ ∠5+∠6=180o.(两直线平行,同旁内角互补)
设计意图:帮助学生理解文字语言、符号语言、图形语言之间的相互转化,为今后进一步学习推理打下基础.
问题4.你能根据平行线的性质1说出性质2、3成立的道理吗?
例如:如图,
∵ a∥b,
∴ ∠1=∠2.
又∵ ∠3= ,(对顶角相等)
∴ ∠2=∠3.
类似的,对于性质3请写出推理过程.
学生观察图,独立思考填空.此处将由性质1推导性质2的过程以填空的形式出现,循序渐进的引导学生思考,使学生初步养成言之有据的习惯,从而能进行简单的推理.教师关注学生独立书写性质3的推理过程中能否做到知识的合理迁移,书写是否正确.
设计意图:引导学生从“说点儿理”向“说清理”过渡,由模仿到独立操作逐步培养学生的推理能力.
4.对比平行线的判定方法和性质,你能说出它们的区别吗?
学生独立思考后回答,教师引导学生明确判定与性质最大的区别在于条件和结论互逆,即从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质.
设计意图:这是学生升入初中以来第一次接触判定和性质,要让学生明确它们之间的区别,防止在应用时发生混淆.为后面学习其他图形的判定和性质作好铺垫.
〈四〉应用新知巩固练习
例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
学生思考、尝试运用符号语言进行推理。老师适度点拨,并根据学生的解题情况板书规范的说理过程。
设计意图:应用平行线的性质3来解决问题,巩固平行线的性质,提高学生分析问题解决问题的能力。
课堂练习:
1.如图,直线a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?
2.如图2,填空:
①∵ ED∥AC(已知)
∴ ∠1=∠C( )
②∵ AB∥DF(已知)
∴ ∠3=∠ ( )
③∵ AC∥ED(已知)
∴ ∠ =∠ (两直线平行,内错角相等)
3.如图3,∠1+∠2=180o,∠3=108o,求∠4的度数.
设计意图:第1题直接利用平行线的性质来计算巩固概念;第2题从不同角度应用性质,强化重点知识的理解;第3题先判定平行再应用性质进行简单的推理计算,从而在解题过程中辨析判定和性质,要求学生会用平行线的性质进行计算.随堂练习可以帮助学生巩固新知,老师从学生解题过程中了解教学效果,从简单图形到复杂图形、从单一知识到几个知识的综合运用,进一步提高学生的识图能力,逐步提高推理能力和解决问题的能力.
〈五〉归纳小结布置作业
课堂小结:
1.今天我们学习了平行线的性质:
性质1.两直线平行,同位角相等.
性质2.两直线平行,内错角相等.
性质3.两直线平行,同旁内角互补.
2.平行线的性质和判定的区别与联系
条件结论
判定
性质
3.我们知道了能够运用平行线的性质得到两个角相等或互补的结论,它是后面学习中进行计算和证明的常用依据,可以用来转化角.
布置作业:
P22:2,3,4
六、教学评价
本节课从学生感兴趣的实际问题引入课题,在各个环节的上都设计成一个个的问题,使学生能围绕问题展开思考,讨论,进行学习。在设计上,强调自主学习,注重合作交流,让学生与学生的交流合作在探究过程中进行,使他们通过动手实践,观察分析,合理猜想,合作交流解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。
以上是我对本节课的设计和说明,请各位同仁批评指正,谢谢大家!
平行线的性质教案【篇8】
《平行线的性质》是鲁教版六年级数学下册第七章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和探索直线平行的基础上进行教学的。
本节课是空间与图形领域的基础知识是今后三角形内角和、三角形全等、三角形相似等知识的学习的理论基础。
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的`性质,会用平行线的性质定理进行简单的计算、证明,区分平行线判定和性质。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:通过创设情境,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。
初一学生已经学习了基本平面图形、两条直线的位置关系、探索两直线平行的条件基础等相关知识,对于平行线的有了自己认知,虽然学生基础差,学生间差距较大,但可以利用学生对新事物的好奇心来激发求知欲望。
1、情境导入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、鼓励学生大胆猜测,指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
3、在学法指导上,教师引导、学生观察、动手测量、猜想、总结出平行线的性质。
(1)取一张A4纸对折、展开,找出内错角,并猜测内错角是否相等?若将两个对角相折,内错角是否相等?学习了这节课后我们就很容易知道答案了。
【设计意图】学生动手,实例导入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据内错角相等可以判定两条直线平行,反过来,如果两条直线平行,内错角之间有什么关系呢?同位角、同旁内角之间又有什么关系呢?
【设计意图】:通过对平行线判定的复习引入新课,一是巩固已有知识,促使学生知识思维的迁移;二是引导学生比较性质与判定的区别。
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,加深平行线性质与判定的区别。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(5)平行线的性质和平行线的判定区别:
平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得出角的关系。
(2)讲解例2、例3。
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处。
【设计意图】:通过练习,检验学生对知识的理解和掌握情况,使学生能更加熟悉该知识点。
【设计意图】:本题是让学生进一步理解平行线的性质,规范解答过程。
平行线的性质教案【篇9】
本节内容的重点是平行线的性质.教材上明确给出了“两直线平行,同位角相等”推出“两直线平行,内错角相等”的证明过程.而且直接运用了“∵”、“∴”的推理形式,为学生创设了一个学习推理的环境,对逻辑推理能力是一个渗透.因此,这一节课有着承上启下的作用,比较重要.学生对推理证明的过程,开始可能只是模仿,但在逐渐地接触过程中,能最终理解证明的步骤和方法,并能完成有两步推理证明的填空.
本节内容的难点是理解平行线的性质与判定的区别,并能在推理中正确地应用它们.由于学生还没学习过命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,用的时候容易出错.在教学中,可让学生通过应用和讨论体会到,如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果由两直线平行,得出角的关系,就是平行线的性质.
由上面的重点、难点分析可知,这节课也是对前面所学知识的复习和应用.要有一定的综合性,推理能力也有较大的提高.知识多,也有了一些难度.但考虑到学生刚接触几何,进度不可过快,尽量多创造一些学习、应用定理、公理的机会,帮助学生理解平行线的判定与性质.
首先,提出本节课的研究问题:如果两直线平行,同位角、内错角、同旁内角有什么关系吗?探究实验活动还是从画平行线开始,得出两直线平行,同位角相等后,再推导证明出其它的两个性质.教师可以用“∵”、“∴”的推理证明形式板书证明过程,学生在理解推理证明的过程中,欣赏到数学的严谨的美.
理解平行线的判定和性质区别,并能在推理过程中正确地应用它们成为了教学难点 .老师可以设计一些有两步推理的证明题,让学生填充理由.在应用知识的过程中,组织学生进行讨论,结合题目的已知和结论,让学生自己总结出判定和性质的区别,只有自己构造起的知识,才能真正地被灵活应用.
几何的学习,既可以培养学生的逻辑思维能力,,也可以培养学生分析问题,解决问题的能力.对于好的学生,可以引导他们总结如何学好几何.注意文字语言,图形语言,符号语言间的相互转化.对简单的`题目,能做到想得明白,写得清楚,书写逐渐规范.
教学目标 :
1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.
2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.
3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.
教学重点:平行线性质的研究和发现过程是本节课的重点.
教学难点 :正确区分平行线的性质和判定是本节课的难点.
1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的已知和结论分别是什么?
2、把这三句话已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。
如、“若a=b,则a2=b2”是正确的,但“若a2=b2,则a=b”是错误的。又如“对顶角相等”是正确的。但“相等的角是对顶角”则是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。
1、我们先看刚才得到的第一句话“两直线平行,同位角相等”。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量角器测量一下,它们产生的几组同位角是否相等?
上一节课,我们学习的是“同位角相等,两直线平行”,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理”。而这句话,是“两直线平行,同位角相等”是已知“平行”从而得到“同位角相等”,因为平行是作为已知条件,因此,我们把这句话称为“平行线的性质公理”,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。
2、现在我们来用这个性质公理,来证明另两句话的正确性。
想想看,“两直线平行,内错角相等”这句话有哪些已知条件,由哪些图形组成?
求证:(1)∠1=∠4;(2)∠1+∠2=180°
例1、如图,是梯形有上底的一部分,已经量得∠1=115°,∠D=100°,梯形另外两个角各是多少度?
∴∠B=180°-115°=65°
∠C-180°-100°=80°
平行线的性质教案【篇10】
[教学目标]: 1、结合生活情景,感知平面上两条直线的平行关系,认识平行线。 2、学生通过自主探索和合作交流,学会用合适的方法创造一组平行线,能借助工具画出已知直线的平行线。 3、使学生经历从现实空间中抽象出平行线的过程,培养空间观念。 4、在数学活动中让学生感受到数学知识在生活中的真实存在,增强学生对数学的兴趣,养成独立思考的习惯,培养应用数学的意识。 [教具、学具准备]: 直尺、三角板、铅笔、方格纸、小棒若干 [教学过程]: 一、活动激趣、引入新课 1、学生同桌之间,玩玩小棒。观察每两根小棒落地后形成的图形 2、让学生记录下活动中形成的图形,然后投影展示 3、有选择的选取其中的几种预先设计在电脑里,让学生把下面的四种情况分分类,让学生可以用自己的语言来解释为什么这样分类,第一次初步感觉相交和不相交。 ① ② ③ ④ 4、如果把这两条线段想象成直线,会出现什么样的情况,先在脑子里面想象一下;然后再说一说 5、电脑演示延长的过程: 观察后第二次分类,说说为什么与刚才的分类不同。 6、学生的回答中提炼相交与不相交的概念。 [设计意图]:《数学课程标准》指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”在教学时,我充分利用活动情境,根据学生已有知识基础和生活经验,通过认真观察、独立思考,在具体的活动中提出问题,解决问题。让所有学生都参与数学活动,让学生在观察、活动中探索,经历学习的过程,愉快地、自主地学习。 二、结合生活、展开教学 1、出示书上情景图,让学生观察后思考:这些画面在哪里见到过,找一找相交的直线和不相交的直线。 2、阴去图片留下红色和兰色的直线,让学生再次感受平面上两直线的位置关系,用手比画它们的位置关系,为提炼互相平行的概念做准备。 3、提炼概念:像刚才我们认识的生活中的跑道线、秋千等这样的在同一平面内,永远不会相交的两条直线叫做互相平行,其中一条直线是另一条直线的平行线。 为了帮助学生理解这一抽象的概念我设计如下几个小环节: ①对这句话的理解有困难的同学可以提出来大家一起讨论。 ②针对“同一平面内”进行阐述,我们现阶段学习的图形都是平面上,老师可以借助实物,如:利用教室中墙壁上的线段来帮助理解同一平面和不同平面内的直线的位置关系。 ③理解“其中一条直线是另一条直线的平行线”利用一组平行线让学生说说他们的关系。如:直线A是直线B的平行线。 4、头脑中对互相平行有了一定的概念以后让学生闭上眼睛想一想,让学生对新知识有一个认知的时间和空间的过程。 5、回归生活,找找在生活里见到过相互平行的线。 6、学会判断:完成想想做做1,在图中找出哪些线是相交的,哪些线是平行的 7、想想做做2,会找出学过的平面图形中互相平行的线,各有几组。 [设计意图]:这个环节的设计,注重学生生活经验的感受,让学生在已有的经验中进行建构,力图使学生从生活经验和客观事实出发,在研究现实问题的.情景中学习数学、理解数学和发展数学。 三、操作实践、创新应用 1、让学生想办法创造出一组平行线。 2、学生介绍自己的创作过程(注意培养学生解决问题策略的多样化)。 3、结合学生介绍的方法,老师有意识的提出问题:如果要画一组间隔是10厘米的平行线,或者更宽、更窄的平行线,我们的直尺没有那么宽,方格纸也没有正好是间隔10厘米,该怎么办?设置问题,学生利用已有经验难以解决问题时,这时让学生打开书自学40页上的方法。 4、自学后说说用直尺和三角板怎样来画出任意的一组平行线。 5、提炼方法:一、画(线) 二、靠(直尺) 三、平移 6、自由用这种方法画出一组平行线,再说说画的方法 7、试一试1:画出已知直线的平行线 8、试一试2:经过点A分别画出已知直线的平行线 综合操作1:你会用画平行线的方法,把下面的图形画成一个长方形吗? [设计意图]:通过操作活动,折折,画画,摆摆,说说,采用个体探索 小组讨论集体交流的教学模式,引导学生自主地去认识互相平行,变传统的平行线的认识为现在的认识平行,实现了课堂教学从封闭型到开放型的转化,为学生的思维提供了广阔的空间。这样,不仅充分调动了学生学习的积极性和主动性,使他们真正参与到认识平行的过程,从而深刻理解其特征,而且培养了创新意识,发展了思维。 四、全课总结(略) 教学反思: 这课是学生初次接触学习习近平行知识,在本课学习以前,学生在实际生活中已积累了许多这些方面的经验。贾老师通过找一找、说一说、玩一玩等实践活动。让学生体验学习数学的乐趣,激发学生积极探索新知和学好数学的欲望的同时培养学生初步的观察、想象、交流与表达,发展学生的空间观念;并提供探索的时间与空间,培养了学生的探索精神和协作意识。 在教学设计中,当学生研究了互相平行的特征后,就让学生用自己的方法创造一组平行线,这样的教学有利于培养学生的个性,照顾到学生的差异。在课的最后一部分“利用新知,解决问题”这个环节中,不仅练习的形式多样,注重基础知识和基本技能的落实和空间观念的培养,而且教师设计的问题具有层次性,这样的教学突出了因材施教,关注了学生的差异,较好的体现了《标准》中“不同的人在数学上得到不同的发展”这一数学理念。
平行线的性质教案【篇11】
一、教材分析
教材的地位和作用
《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
教学重难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、教法、学法
教法:
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
学法指导:
通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、教学过程
1、创设情境引入
在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。
前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等、
性质2:两直线平行,内错角相等、
性质3:两直线平行,同旁内角互补、
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识小组交流20页例题
(4)完成导学案上课堂练习
【设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、课堂检测
完成导学案上课堂检测习题
设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。
6、作业设计
P24第4、12题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1:例题:练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
平行线的性质教案推荐6篇
这篇文章是我认真挑选的一篇精美的“平行线的性质教案”,希望能够带给您不同凡响的阅读体验。在教育工作中,教师的教案课件起到了非常重要的作用,只有提前备好了充足的准备工作,才能够为学生们打造一个生动有趣的课堂。尤其是对于新入职的教师来说,教案课件的制作更是必不可少的。相信通过这篇文章,您能够有所收获,喜欢它!
平行线的性质教案 篇1
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、
1、合作学习:
如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2、你发现平行线还有哪些性质?
平行线的性质:
CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
3、做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2=()∠3=-∠1=()
4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5、练一练:(P、14课内练习1、2)
6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。
∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)
∵BD平分∠ABC(已知)
∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)
7、练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。
三、拓展
12a34bD图1-15Ccd
1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由
2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C
ABA图1 B FECD
四、知识整理:
1、平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等
3、要注意一题多解
五、布置作业
P、15作业题及作业本。
平行线的性质教案 篇2
一、教材的地位和作用分析
本节的主要内容是平行线的三个性质与判定的综合应用,这也是本章的重点之一。本节内容对以后研究角的大小关系有着重要作用,也为培养和发展学生的逻辑思维能力,观察、实验、分析、归纳等能力打下基础。本节教学应重视学生的实际操作以及在操作过程中的思考,这对于发展学生的空间观念,理解平行线的性质是非常重要的。
二、学生情况分析
从认知结构的角度看,学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识。学生已经学了平行线的判定,具备了探究平行线性质的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。我班的部分学生的基础比较差,缺乏自学能力、动手能力,所以应该重视对学生学习兴趣和态度的培养,重视学生的自主探究和合作交流以及创新意识的培养,充分利用七年级学生好奇、好强、好胜的心里特点,激发学生勇于探索和合作交流的学习气氛。
三、教学目标
1、知识与技能目标
使学生理解平行线的性质,能知道平行线的性质与判定的区别,并会用平行线的性质解决实际问题。
2、过程与方法目标
经历观察、操作、想象、推理、交流等活动,培养学生推理能力,有条理地表达能力,创新能力和发散思维意识。
3、情感与态度目标
学会多角度探索问题的方法,学会运用类比等数学方法,让学生在学习中体验数学充满探索和创造。
四、教学重、难点
1、教学重点:
探索平行线的性质,并进行简单的推理和计算。
2、教学难点:
平行线的判定和性质的区别和综合运用。
五、教法与学法
借助“标准化双语教学平台”的教学优势,以学习者为中心,主动探索、发现、构建知识,通过小组合作学习使学生自主完成学习目标,使“一题多解”思想在具体的教学实践中得以充分体现。
六、教学过程
(一、)复习引入
1、平行线的性质有哪些?
2、平行线的判定有哪些?
3、平行线的性质与判定的区别与联系
(1)区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
(2)联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。
4、总结:已知平行用性质,要证平行用判定
设计意图:通过回顾平行线的判定和性质,激发学生的知识经验,为学习课文的平行线的性质和判定的应用做好准备。
(二)合作学习一:平行线性质应用
例(课本P19)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A与∠D、∠B与∠C的位置关系如何,数量关系呢?为什么?
1、讲解按课本.
2、引导学生发现问题:课本中的解题过程不够简练,引导学生小组合作讨论更为简单合理的解题过程,并由各小组推荐学生上台展示解题过程。
(三)巩固练习
1.课本练习(P20).
1、如图,直线a∥b, ∠1=54°,∠2, ∠3, ∠4各是多少度?
2、已知∠ADE=60 ° ∠B=60 °∠AED=40°,(1)求证DE∥BC
(2)∠C的度数
想一想1、学生自主画图,并将已知条件标到图上,使学生体会数形结合的重要性。
2、寻找题目中的已知条件,合理的将已知和求解的内容联系起来。即如何利用已知条件来解题。
3、正确的区分和应用平行线的性质和判定解决问题。
4、规范解题步骤,学生不仅会说,更要会写。
(四)合作学习二:拔高练习
如图,已知AB∥CD , ∠ A=40°,∠ C=35°,求∠AEC的度数。
想一想:1、题目中给了我们那些已知条件?
2、如何将这些已知条件联系起来呢?
3、你能用几种方法来解决该问题呢?
教师引导学生发现添加辅助线的作用,添加的方法及要求(用虚线),并会用数学语言表述清楚。
(五)学生练习
习题5.3第5、7、8
(六)归纳小结
求角的大小或是证明两个角相等、互补的方法之一是利用平行线的性质,理解平行线的性质与判定的区别与联系。当平行线间的夹角不能直接求解时,添加适当的平行线,将要求的角转化为两个平行线间所夹的内错角、同位角或者同旁内角来解答,为了解决问题,自己添加的线叫做辅助线,用虚线表。
(七)布置作业
必做题:
习题5.3第5、6、8题
选做题:
习题5.3第14、15题
七、课后反思
通过本节课的学习,学生能理解和应用平行线的性质和判定方法解答实际问题,学生的学习积极性很高,不少学生不仅能说还能完整的书写下来,学生在课堂上能及时提出问题并主动在小组内解决问题以上情况较好。但是个别同学还是跟不上节奏,存在会说不会写的现象,课后还得加强练习。
平行线的性质教案 篇3
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的'性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、1、合作学习:
如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2、你发现平行线还有哪些性质?
平行线的性质:
CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
3、做一做:
如图,AB,CD被EF所截,AB∥CD(填空)
若∠1=120°,则∠2=()∠3=-∠1=()
4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?
(2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)
∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)
∴∠2+∠BAD=180°(两直线平行,同旁内角互补)
E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5、练一练:(P、14课内练习
1、2)
6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。
∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:
(1)AB与CD平行吗?为什么?
(2)∠D与∠ABD是一对什么的角?它们是否相等?为什么?
(3)∠CBD与∠ABD相等吗?为什么?
解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)
∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)
∵BD平分∠ABC(已知)
∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)
7、练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。
三、拓展
12a34bD图1-15Ccd
1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由
2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D C
ABA图1 B FECD
四、知识整理:
1、平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等
3、要注意一题多解
五、布置作业
P、15作业题及作业本
平行线的性质教案 篇4
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习了平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题(出示投影片1).
1.如图1,
(1)∵ (已知),∴ ( ).
(2)∵ (已知),∴ ( ).
(3)∵ (已知),∴ ( ).
2.如图2,(1)已知 ,则 与 有什么关系?为什么?
(2)已知 ,则 与 有什么关系?为什么?
图2 图3
3.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角 是 ,第二次拐的角 是多少度?
学生活动:学生口答第1、2题.
师:第3题是一个实际问题,要给出 的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:
[板书]2.6 平行线的性质
【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.
探究新知,讲授新课
师:我们都知道平行线的画法,请同学们画出直线 的平行线 ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?
学生活动:学生在练习本上画图并思考.
学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.
【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.
学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.
提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线 ,使它截平行线 与 ,得同位角 、 ,利用量角器量一下; 与 有什么关系?
学生活动:学生按老师的要求画出图形,并进行度量,回答出不论怎样画截线,所得的同位角都相等.
根据学生的回答,教师肯定结论.
师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.
[板书]两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的基础上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.
提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?
学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.
师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.
学生活动:学生们思考,并相互讨论后,有的同学举手回答.
【教法说明】在前面复习引入的第2题的基础上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也激励了学生的学习兴趣.
教师根据学生回答,给予肯定或指正的同时板书.
[板书]∵ (已知),∴ (两条直线平行,同位角相等).
∵ (对项角相等),∴ (等量代换).
师:由此我们又得到了平行线有怎样的性质呢?
学生活动:同学们积极举手回答问题.
教师根据学生叙述,板书:
[板书]两条平行经被第三条直线所截,内错角相等.
简单说成:西直线平行,内错角相等.
师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.
师生共同订正推导过程和第三条性质,形成正确板书.
[板书]∵ (已知),∴ (两直线平行,同位角相等).
∵ (邻补角定义),
∴ (等量代换).
即:两条平行线被第三条直线所截,同旁内角互补.
简单说成,两直线平行,同旁内角互补.
师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵ (已知见图6),∴ (两直线平行,同位角相等).∵ (已知),∴ (两直线平行,内错角相等).∵ (已知),∴ .(两直线平行,同旁内角互补)(板书在三条性质对应位置上.)
尝试反馈,巩固练习
师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?
学生活动:学生给出答案,并很快地说出理由.练习(出示投影片2):
如图7,已知平行线 、 被直线 所截:
(1)从 ,可以知道 是多少度?为什么?(2)从 ,可以知道 是多少度?为什么?(3)从 ,可以知道 是多少度,为什么?
【教法说明】练习目的是巩固平行线的三条性质.
变式训练,培养能力
完成练习(出示投影片3).
如图8是梯形有上底的一部分,已知量得 , ,梯形另外两个角各是多少度?
学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.
【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找 和 的大小.这里学生能够自己解题,教师避免包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,规范学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.
[板书]解:∵ (梯形定义),∴ (两直线平行,同旁内角互补).∴ .∴ .
变式练习(出示投影片4)
1.如图9,已知直线 经过点
(1) 等于多少度?为什么?
(2) 等于多少度?为什么?
(3) 、 各等于多少度?
2.如图10, 在一条直线上,
(1) 时, 各等于多少度?为什么?
(2) 时, 各等于多少度?为什么?
学生活动:学生独立完成,把理由写成推理格式.
【教学说明】题目中的为什么,可以用语言叙述,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,若学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.
(四)总结、扩展
(出示投影片1第1题和投影片5)完成并比较.
如图11,
(1)∵ (已知),
∴ ( ).
(2)∵ (已知),
∴ ( ).
(3)∵ (已知),
∴ ( ).
学生活动:学生回答上述题目的同时,进行观察比较.
师:它们有什么不同,同学们可以相互讨论一下.
(出示投影6)
学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由已知直线平行,得到角相等或互补的结论是平行线的性质.
【教法说明】通过有形的具体实例,使学生在有充足的感性认识的基础上上升到理性认识,总结出平行线性质与判定的不同.
巩固练习(出示投影片7)
1.如图12,已知 是 上的一点, 是 上的一点,
(1) 和 平行吗?为什么?
(2) 是多少度?为什么?
学生活动:学生思考、口答.
【教法说明】这个题目是为了巩固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.
八、布置作业
(一)必做题
课本第99~100页A组第11、12题.
(二)选做题
课本第101页B组第2、3题.
作业答案
A组11.
(1)两直线平行,内错角相等.
(2)同位角相等,两直线平行.两直线平行,同旁内角互补.
(3)两直线平行,同位角相等.对顶角相等.
12.
(1)∵ (已知),∴ (内错角相等,两直线平行).
(2)∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,同位角相等).
B组2.∵ (已知),∴ (两直线平行,同位角相等), (两直线平行,内错角相等).
∵ (已知),∴ (两直线平行,同位角相等), (同上).又∵ (已证),∴ .∴ .又∵ (平角定义),∴ .
13.平行线的判定与平行线的性质,它们的题设和结论正好相反.
平行线的性质教案 篇5
教学目标
1.经历从性质公理推出性质的过程;
2.感受原命题与逆命题,从而了解平行线的性质公理与判定公理的区别,能在推理过程正确使用.
对话探索设计
〖探索1反过来也成立吗
过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.显然,这两个句子都是正确的.
现在换一个例子:如果一个整数个位上的数字是5,那么它一定能够被5整除.对吗?这句话反过来怎么说?对不对?
结论:如果一个句子是正确的,反过来说(因果对调),就未必正确.
〖探索2
上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?猜一猜:它还是对的吗?
〖探索3
(1)用三角尺画两条平行线a、b.说一说:不利用第三条直线能画出两条平行线吗?请画出第三条直线(把它记为c),并说明判定这两条直线平行的'根据(公理或定理);
(2)在(1)中再画一条直线d与直线a、b都相交,找出其中的一对同位角,用量角器量出它们的度数验证你原来的猜测.
结论:两条平行线被第三条直线所截,同位角相等.
与平行线的判定公理一样,这个结论也是基本事实,即人们在长期实践中出来的结论,我们把它叫做平行线的性质公理,它是平行线的第一条性质.
〖探索4
如图,请画直线c截两条平行线a、b;再在图中找出一对内错角.同学们一定能从直觉判断这对内错角也是相等的.也就是说:
两条平行线被第三条直线所截,内错角相等.它是平行线的第二条性质.
现在我们来试一试:如何根据性质1说出性质2成立的道理.
如图,
∵a∥b(已知),
∴∠1=∠3(____________________).
又∠3=________(对顶角相等),
∴∠1=∠2(___________).
以上过程说明了:由性质1可以得出性质2.
〖探索5
我们学过判定两直线平行的第三种方法:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.(简单地说:同旁内角互补,两直线平行.)
把这条定理反过来,可以简单说成_____________________.
猜一猜:把这条定理反过来以后,还成立吗?
〖练习
P22练习
说一说:求这三个角的度数分别根据平行线的哪一条性质?
〖作业
P25.1、2、3
〖补充作业
如图:直线a、b被直线c所截,
(1)若a∥b,可以得到∠1=∠2.根据什么?
(2)若∠1=∠2,可以得到a∥b.根据什么?
(注意:(1)、(2)的根据一样吗?)
平行线的性质教案 篇6
教学目标:
(1)知识与技能:
探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。
(2)过程与方法:
在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。
(3)情感态度、价值观:
在课堂练习中,体验几何与实际生活的密切联系。
教学重点:
平行线的性质。
教学难点:
平行线的性质定理与判定定理的区别。
教学模式:
发现教学模式。
教学方法:
直观教学法、发现教学法、主体互动法。
教学手段:
计算机辅助教学。
教学过程:
教学环节
教师活动
学 生活 动
教 学 意 图
复习提 问
复习提问:
判定两直线平行的方法有哪些?怎样用符号语言表述?
思考、回答
了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。
进行新课进行新课
【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)
随后同桌同学交换,再次测量、填表。
关注:
对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。
画图、测量、填表
思考、动手尝试,方法可能多种多样
激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的兴趣。
给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。
【提问】能否将我们发现的结论给予较为准确的文字表述?
总结、表述
锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。
【大屏幕】平行线的性质:
定理1。两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。
定理2。两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。
定理3。两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。
【提问】讨论这些性质定理与前面所学的判定定理有什么不同?
理解、记忆、思考、讨论、回答
进行文字语言的规范。
避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。
【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?
【大屏幕】符号语言:(不唯一)
性质定理1。∵l1∥l2
∴∠1=∠5 (两直线平行,同位角相等)
性质定理1。∵l1∥l2
∴∠3=∠5 (两直线平行,内错角相等)
性质定理1。∵l1∥l2
∴∠3+∠6=180o (两直线平行,同旁内角互补)
思考、一位同学板书。
观察、理解
为今后进一步学习推理打基础,并进行符号语言的规范。
【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?
鼓励学生使用符号语言表述推导过程。
【大屏幕】规范定理的推导过程。
思考、尝试回答
观察
培养学生的'逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。
例题示范
【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?
思考、尝试运用符号语言进行推理。
要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。
趣味练习
【大屏幕】(见附录2)
思考、讨论、解释结论
寓教于乐,进一步让学生感受“认识来源于实践”。
巩固练习
【大屏幕】巩固练习(见附录3)
积极思考、展开讨论、踊跃回答
循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。
拓展思路
【大屏幕】探究题(见附录4)
【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。
猜测、讨论,寻找规律
使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。
课堂小结
【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?
回顾、归纳
将本节课知识进行回顾。
布置
作业
【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12
课后完成
课后能进一步巩固,鼓励学生去发现身边的数学问题。
角平分线的性质的教案6篇
资料可以指生产、生活中必需的东西。如:生产资料;生活资料。不管我们是学习,还是工作中,都需要寻找一些资料。有了资料才能更好的在接下来的工作轻装上阵!所以,你有哪些值得推荐的资料内容呢?小编特地为你收集整理“角平分线的性质的教案6篇”,还请你收藏本页以便后续阅读。
角平分线的性质的教案 篇1
【教学目标】
1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.
2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.
3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.
【教学重点】
角平分线的性质定理和判定定理的探索与应用.
【教学难点】
理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.
【教学方法】
启发探究式.
【教学手段】
多媒体(投影仪,计算机).
【教学过程】
一、复习引入:
1.角平分线的定义:
一条射线把一个角分成两个相等的角,这条射线
叫这个角的平分线.
表达方式:
如图1,∵ OC是∠AOB的平分线,
∴ ∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB).
2.角平分线的画法:
你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).
可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.
3.创设探究角平分线性质的情境:
用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:
(拼法1)(拼法2)(拼法3)
选择第三种拼法(如图2)提出问题:
(1)P是∠DOE平分线上一点,PD、PE与∠DOE
的边有怎样的位置关系?
(2)点P到∠DOE两边的距离可以用哪些线段来表示?
(3)PD、PE有怎样的数量关系?(投影)
二、探究新知:
(一)探索并证明角平分线的性质定理:
1.实验与猜想:
引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?
用TI图形计算器实验的结果:
(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).
引导学生用语言阐述自己的观点,得出猜想:
命题1在角平分线上的点,到这个角的两边的距离相等.
2.证明与应用:
(学生写在笔记本上)
已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE⊥OB于E.
求证:PD=PE.(投影)
证明:∵ OC是∠AOB的平分线,
∴ ∠1=∠2.
∵ PD⊥OA于D,PE⊥OB于E,
∴ ∠ODP=∠OEP=90.
又∵ OP=OP,
∴ △ODP≌△OEP(AAS).
∴ PD=PE
三、作业设计
反思:
一、重视情境创设,让学生经历求知过程。本节课引入问题教学的模式,其目的是引导学生积极参与课堂,积极投入到解题思路的探索过程中,通过合作学习引导学生深层次参与,倡导同学们要学会用大脑去思考,用耳朵去倾听,用眼睛去观察,用双手去操作,使学生言语与行动逐步起到自觉调控的作用,促进思维的“内化”,从而发展学生的独立思考能力。
二、不足之处的反思:通过看自己的录像课,感觉自身的课堂教学还有很多地方有待于改进和完善。尤其是对课堂语言的锤炼,不仅仅是表达清楚,更要言简意赅,把更多的时间留给学生,让学生在课堂上有更多的时间去思考。还要注意,发挥学生的主体性不应停留在口头上,还要在实际操作时充分体现教师是学生学习的引导者,学生是学习的真正的主人。
角平分线的性质的教案 篇2
教材分析
1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;
2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。所以本节内容在初中数学知识体系中起到承上启下的作用。
学情分析
1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。
2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的
性质定理的证明和运用性质定理证明线段相等。
3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等
教学目标
1、知识与技能:角平分线定理及定理的证明及应用。
2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。
3、情感、态度与价值观:通过自主学习的发展体验获取数学知识的感受。
教学重点和难点
教学重点:角平分线的性质定理的探究、证明、运用。
教学难点:角平分线的作图方法、角平分线的性质的运用。
角平分线的性质的教案 篇3
教材分析
1.角的平分线性质是初中阶段几何证明中重要的内容,为证明三角形全等提供更多的方法和条件;
2、在利用全等三角形的基础上更进一步推理出角的平分线性质;
3、在这节课中,也能让学生更多的动手作图,练习学生的尺规作图能力,把数学运用到实际生活中去;
学情分析
1.学生对数学学习兴趣不够高,基础知识参差不齐,特别是对作图方法难以掌握;
2.学生对做角的平分线、角平分线到两边的距离作图不够规范,达不到垂直的要求;
3.学生对如何动手作角平分线和证明角平分线的性质过程感到比较难掌握。
教学目标
1、掌握作已知角的.平分线的方法;
2、掌握角平分线的性质,掌握角平分线性质的推导过程;
3、角平分线性质的运用。
教学重点和难点
重点:角的平分线性质的证明及运用;
难点:角的平分线性质的探究。