搜索

多边形的面积课件

发布时间: 2023.09.06

多边形的面积课件(热门四篇)。

经过整理,工作总结之家小编为你呈上“多边形的面积课件”。教案课件是老师上课的重要部分,准备教案课件的时刻到来了。 教案和课件设计出色是教学成功的关键。为了自己和家人让我们都变得更加优秀!

多边形的面积课件(篇1)

《多边形的面积(复习与整理)》

一、教学内容:

人教版小学数学五年级上册第六单元“多边形的面积整理复习”。

二、教学目标:

1、回忆整理多边形面积的计算公式及推导过程,熟练地应用公式进行计算。

2、探索知识间的相互联系,构建知识网络的过程,从而加深对知识的理解,并从中学会整理知识,领会学习方法。

3、渗透“联系”、“转化”等思想方法,体验数学与生活的联系,数学在实际生活中的运用。

三、教学重点:

回忆整理多边形面积的计算公式及推导过程。

四、教学难点:

根据多边形面积之间的相互联系构建知识网络。

五、教学准备: 多媒体课件、学具。

六、教学过程:

(一)、创设情境,引入课题。

同学们在我们刚结束的多边形的面积这一单元,我们都一起研究了哪些图形的特征和面积?

生:平行四边形,三角形,梯形。(随贴到黑板)

今天我们就来复习和解决关于这些多边形的面积方面的知识。(板书:多边形的面积复习)

2、回忆一下我们都学习了这些图形的哪些数学知识呢? 学生回答

师:你能在练习本上写出用字母表示的面积计算公式吗?

学生写公式。

3、组织反馈。(课件展示)

(二)、梳理知识,构建知识网络。

师:这三个平面图形每个图形的面积公式分别是怎样推导出来的呢? 师:请小组中的每个同学选1种你喜欢的图形,借助课前准备的学具,和你的学习伙伴交流一下面积的推导过程。

全班交流,哪个同学愿意代表你们组上台来说一说你选出的图形的面积推导过程。

生A:把两个完全一样的三角形拼成了一个平行四边形,这个平行四边形的底就是三角形的底,这个平行四边形的高就是三角形的高,平行四边形的面积等于底乘以高,所以三角形的面积等于底乘以高除以2。生B:„„

刚才这个小组的代表说的是**的面积推导过程,(课件展示)有选其它图形的吗?(课件展示)

师:从这几种平面图形的推导过程看,你觉得这三种平面图形之间有联系吗?把你的想法说给你同组的小伙伴们听,和他们商量商量,看看你们的意见能不能得到统一。

师:商量好没有?谁愿意将你们商量的结果告诉大家?

生A:由平行四边形的面积计算公式推出了三角形和梯形的面积计算公式,我们都是把新学的图形转化成以前学习过的图形从而来推出它的面积计算公式的。

师:说得非常好,刚才这位同学说这几个图形面积的推导过程的联系时用到了一个重要的词语——转化(板书:转化),这种把新问题转化成已经学过的知识,从而解决新问题是数学学习中一种很常见的方法。

那你能不能用简洁的几个箭头把这几个图形连结一下,清楚地表示出他们之间的关系。学生板演

追问:你为什么这样连?说说你的想法。其它同学的意见和他们一样吗?

有没有要补充的?或者你有不一样的想法想展示一下?

师:你觉得可以按照怎样的观察顺序来帮助我们理解记忆这些平面图形的面积推导过程呢?

生A:我觉得可以从左往右看:由长方形面积推导出正方形、平行四边形的面积,由平行四边形面积推导出三角形和梯形的面积。

生B:我觉得可以从右往左看:求三角形、梯形的面积可以转化为求正方形、平行四边形的面积可转化为求长方形的面积。

师:现在请同学们转动观察,将这幅图竖起来观察,你觉得这幅图像什么?生:象一棵知识树。

师:说得真好,你们看图形与图形之间的联系紧密,长方形的面积计算公式就是树根是基础。基础打不好,学习后面的知识就会受到影响。师:那就请你们互帮互助,结合这些平面图形面积推导过程之间的联系,将我们对这一单元所学内容的整理,在小组内再次交流一下,过会我们全班交流。我们看谁设计的网络图内容完整,条理清晰。生汇报小组网络图

哪位同学说一说他整理的怎么样?

小结:这个图示非常清晰,一目了然,你们在整理知识的时候就要学习这种方法,先找到他们之间的联系,然后再将零散的相关知识补充进去,就形成了一个系统、完整的知识脉络图。

(三)应用方法,立足实践

师:那在生活中我们该怎样用这些计算公式呢?接下来,老师来考考大家,看看哪些同学能学以致用。(课件出示题目)

(四)总结评价,巩固方法

同学们下课的铃声拉响了,有收获吗?有收获啊,今天,我们对多边形的面积的知识进行了系统的整理和复习,并解决了我们身边遇到的

数学问题。在复习阶段,我们可以利用今天学习到的方法对知识进行总结,这样不但可以梳理知识,还可以提升认识,好啦同学们感谢你们,那么今天有些同学把概念忘掉了没关系回去以后在复习复习,好不好?

思考之一:复习课的目的是什么?

我以为,复习课是以复习为主要内容,通过对所学知识的再学习、再加工、再整理,来巩固加深 已学的知识,从而使知识系统化。学生对知识的学习,一般是以琐碎的方式进行的,平时学习中所形成的知识结构是松散的,不利于知识的检索。为能实现有效的检索,必须对所学知识进行必要的加工整理,这就是复习课必需完成的重要内容和应达到的最终目的。

思考之二:在复习之前,学生究竟对哪些知识的掌握是透彻的?对哪些知识的掌握是模糊的?还有哪些知识是学生的空缺?

为什么要思考这些问题呢?它们是我实施教学的依据。有了这些思考,哪些知识需要重点讲解?哪些可以让学生自己整理?学生的知识结构到底建构成什么程度?学生对概念知识之间的联系理解到底达到什么水平?等等。这些都可以做到心中有数。

通过课前的了解发现,学生的公式运用比较熟练(因为经常使用的缘故),但对公式的推导过程似乎有些遗忘,不同的个体理解水平,不同的记忆能力导致部分学生根本回忆不出公式的推导过程。所以在设

计中,我采用多媒体课件,在短时间内呈现大量的新课信息,以让学生再次经历公式推导的过程。

思考之三:通过复习,需要给学生留下些什么?

复习课,是把新课内容加以重复?还是把知识简单叠加?还是就题目讲题目?还是用一份作业先练习,再结合练习情况加以评讲?上了一节复习课,应该给学生留下些什么?是知识?是能力?还是两者兼有?还是有其他的方面?

平面图形的面积涉及的概念很多,如面积的意义、六种平面图形的面积公式、公式的推导等。这些基本的概念是学生概念系统中的基本组成部分。因此,理解并记忆基本概念是十分必要的。所以,课始了揭示面积的意义后,随即让学生回忆六种平面图形的面积计算公式以及它们各自的推导过程。并借助于多媒体课件,在较短时间内动态展示计算公式的推导过程。这样的环节设计,帮助学生唤醒沉睡的记忆,为帮助学生建立概念图提供了必要的准备。

不足的是,我在课堂教学中,对策略注重的是提炼,在指导学生灵活运用上做的不够。

多边形的面积课件(篇2)

本节课是小学数学五年级第5单元8 2页整理和复习中的内容。这部分教材要求先把本单元学过的知识进行系统的整理,然后再通过混合练习复习巩固各种多边形面积的计算。在授课中结合自己对《新课程标准》以及《心理学》的理解,体现出一些创新理念:不是让学生机械的背诵和默写公式,而是通过情境引入、剪切拼摆、合作学习、创造想象。算法多样等各环节来实现人人学有价值的数学,人人掌握必须的数学,不同的人在数学上得到不同的发展。

教学目标:

1、知识性目标:引导学生回忆、整理多边形面积计算公式的推导过程,能熟练应用公式进行计算,适当渗透事物之间是相互联系 的观点。

2.能力目标:通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究、解决实际问题的能力。

3、情感与价值观目标:将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展学生的创新思维。

教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于转化这一重要数学思想有更深理解,从而进行学法指导。

精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学生能动地构建知识体系。

生:长方形、正方形、平行四边形、三角形、梯形。

师:下面我们一起来对学过的多边形面积进行整理和复习。

(设计理念:数学是人们在生产、生活中遇到问题进行思考研究而产生的。形象的`多媒体演示,不仅使学生认识到几何图形的由来,也必将激发学生的学习兴趣,并把所学知识应用到生活中去。)

1、师:这里有许多大家学过的图形卡片,谁能领取一张说说它的面积公式?

生1:长方形的面积=长宽; 生2:正方形的面积=边长边长; 生3:平行四边形面积=底高;

2.师:平行四边形的面积公式是如何推导的?请大家分小组讨论、剪拼,看能想到几种方法?

生1:我沿着过平行四边形的顶点的高剪开,将它们排成一个长方形。生2:我沿着过平行四边形底边上一点的高剪开,将它们拼成一个长方形。生3:还可以沿着两个顶点的高剪下,两个三角形,将它们排成一个长方形。

生4:其实沿着平行四边形内任意一条高剪开,都可以排成一个长方形。

您现在正在阅读的《多边形的面积》说课稿文章内容由收集!本站将为您提供更多的精品教学资源!《多边形的面积》说课稿 3、小组合作完成:回顾讨论三角形、梯形面积公式的推导过程。 (教师巡视,个别指导。)

4、师:只通过一个图形来推导其它图形的面积公式,首先选谁?长方形 正方形平行四边形?

生1:正方形是特殊的长方形,所以最基本的是长方形。

生2:平行四边形只在推导三角形和梯形而积公式时用到,最基本的图形是长方形。

(设计理念:让学生经历、回顾多边形面积计算公式的推导过程 是本节课的一个重要目标。本环节中,学生采用动手实践、合作学习等多样化的学习方式去自主发现多边形面积之间存在的必然联系。)

2、计算组合图形面积,有几种方法就用几种方法。课本P96第2题。

3、左图是教室的一面墙,如果砌这面墙每平方米用砖185块,一共需要用多少块砖?

课本P97第2题。

4、下图的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?(剪一剪、算一算)

(设计理念: 基础知识与基本技能是学生学习的重点。教师通过练习反馈环节测评 ,学生对多边形面积计算公式的掌握和理解,训练学生思维的层次性、深入性和发展性。在组合图形面积计算方法的探索中,学生动眼观察、动脑思考、动手操作,把一个组合图形分解成几个已经学习过的基本图形,、达到练习趣味化、综合化。既培养了学生发散思维能力,又使学生在解决问题的能力和策略上得到培养。)

通过这节课的学习,你有什么收获?

多边形的面积课件(篇3)

教学内容:

1、平行四边形面积的计算(第12-14页)

2、三角形面积的计算(第15-18页)

3、梯形面积的计算(第19-21页)

4、实践活动:校园的绿化面积(第26-27页)

教材分析:

教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等小系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。

教学目标:

1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。

2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。

3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。

4、使学生在操作、思考的过程中,提高对空间与图形内容的学习兴趣,逐步形成积极的数学情感。

教学重点:平行四边形、三角形、梯形的面积计算公式

教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。

课时安排:9课时

多边形的面积课件(篇4)

多边形及多边形的内角和

【教学目标】 知识与能力: 1.了解多边形定义。

2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.

4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:

1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。

2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;

3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】

Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】

1、创设情境,导入新课 1/4页

(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】

(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。

(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。

(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固

【总结回顾,反思内化】 这节课学了什么?学生自由发言。

教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为

(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】

多边形的面积课件(篇5)

《多边形的面积》整理与复习教学设计

王润敏

教学目标:

1、进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算这些图形的面积,并解决一些简单的实际问题。

2、通过回忆、交流,将“多边形的面积”这个单元所学的知识进行系统复习,形成完整知识体系;结合练习,加深对所学知识的理解,提高应用所学知识解决实际问题的能力。

3、感受系统复习的必要性与重要性,逐步形成学生自己整理所学知识的意识和良好的学习习惯。

4、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点难点:

重点是把通过归纳和整理本单元所学的面积公式,形成完整的知识体系,能正确应用这些面积公式解决实际问题。难点是把掌握多边形面积公式之间的联系。教法学法: 本课指导思想是发挥学生的主体作用,引导学生自主学习。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。教学过程:

(一)、回忆公式,夯实基础。小组合作交流。(思路提示)

1、本单元学过哪些多边形面积的计算公式?

2、他们是怎样推导出来的?

3、看图计算图形面积时,特别要注意哪些方面的问题?

(二)、全班交流,形成知识体系。

1、学生回答问题1,老师同步板书。

2、学生回答问题2,老师同步课件展示。(体现转化的数学思想)

3、学生回答问题3。学生先回答但不一定完整,再通过一些具体练习把答案补充更加完整。得到结论: 计算图形的面积时,特别要注意以下几个方面的问题 :

(1)计算三角形、梯形面积时一定不要忘记除以2。

(2)看图列式时,一定要找准相对应的底和高。

(3)单位不统一时,一定不要忘记单位转化。

(4)需要的条件不足时,用分步先算出来。

(三)、多样练习,促进理解。

1、重视利用填空、判断、选择题,巩固本单元概念。比如:填空题两个一样的梯形可以拼成一个(平行四边形),它的底边等于梯形的(上底加下底的和)。判断题:三角形的面积是平形四边形的一半。(×);两个三角形的高相等,它们的面积就相等。(×)

在选择题部分,强化了多边形面积计算时要注意底与高的“对应”。

2、在解决生活实际问题部分,我则补充了下列对比练习:

一块地近似平行四边形,它的底是50米,高12米。

(1)如果每平方米施化肥0.5千克,那么这块地共需施化肥多少千克?

(2)如果在这块地里种玫瑰,每棵玫瑰占地0.5平方米,这块地能种玫瑰多少棵?

小组合作完成,议一议、比一比第(1)和(2)问题的解题方法一样吗?为什么? 引导学生总结出解决问题需要注意:(1)、弄清楚图形,选择公式。

(2)、注意:条件要相对应,单位要统一,别忘了除以2(三角形、梯形)(3)、根据题意,弄清面积与其它数量间的关系.(四)、课堂小结:

这节课我们复习了多边形的面积,你有什么收获?

多边形的面积课件(篇6)

本节课主要讲解多边形面积中的第一个图形面积,数学中非常重要的,平行四边形面积如何计算。

一、教学目标:

1.在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3.培养学生的分析、综合、抽象、概括和解决实际问题的能力。

二、教学重点:

理解并掌握平行四边形的面积公式

三、教学难点:

理解平行四边形面积公式的推导过程。

四、教学内容:

教材7-8页例1-例3

五、教学过程:

1.复习导入新课:说出学过的平面图形,在这些图形中,你会求哪些图形的面积?

2、探究新知:

教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

预设:学生大多会用数方格方法进行比较,对于出现转化教师应当鼓励,并加以引导。

(2)出示例1中的第2组图

你还能比较出这两个图形的大小吗?(学生交流,教师适当强调\转化\的方法,同时让学生思考第1组图也可以用转化的方法吗?)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。

今天我们来研究平行四边形面积的计算。(板书课题)

3、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成长方形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:

①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③平移至斜边重合。

第二种:

①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③倒过来斜边重合。

(4)小组讨论:比较两种转化方法,说说它们有什么相同的地方?

4、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第115页上任选一个平行四边形剪下来(课前准备),先把它转化成长方形,再求出面积并填写下表。

转化后的长方形平行四边形

长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)

(2)学生操作,反馈交流。

(3)小组讨论。

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长和宽与平行四边形的底和高有什么关系?

③根据长方形的面积公式,怎样求出平行四边形的面积?

(6)学生总结,形成下面的板书:

长方形的面积=长宽

平行四边形的面积=底高

S=ah

5、巩固练习:

①指导完成试一试:

明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

②指导完成练一练:

强调底和高的对应关系。

六、教学结束:

通过今天的学习有哪些收获?请同学们回去预习,下一课所学内容三角形面积。

多边形的面积课件(篇7)

教学内容:梯形的面积计算

教学目标

1.使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。

2.通过操作,培养学生的迁移类推能力和抽象概括能力。

3.培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想

教学重点理解并掌握梯形的面积计算公式及推导过程。

教学过程

一、复习并引入课题

1.计算下面图形的面积。(单位:厘米)

2.三角形面积的计算公式是怎样推导出来的?为什么要“除以 2”?

3.教师出示场景图:生活中,我们能看到各种形状的物体,这辆小轿车的车窗是梯形的,仔细观察梯形有什么特点?(教师首先指出梯形各部分名称,让学生认识梯形的上底、下底和高)

问题:下面这个梯形你能指出它们的上底、下底和高吗?。

导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?

二、学生自己尝试并归纳和总结出梯形的面积公式。

1.你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。

2.学生操作,互相讨论。

3.根据讨论结果,完成88页书空,总结出梯形的面积公式。

4.汇报结果。提问:通过刚才的学习,你知道了什么?

引导学生明确:

①两个完全一样的梯形能拼成一个平行四边形。

②这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。

③梯形面积:(上底+下底)×高÷2

④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以 2”?

⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?

学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。

5.引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:

S=(a+b)h÷2

问题:要求梯形的面积必须知道哪些条件?为什么要“除以 2”?

总结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?

三、应用

1.出示例题:我国三峡水电站大坝的横截面的一部分是梯形,你能求出它的面积吗?

①首先根据题意画出示意图。分析已知条件以及求解内容。(生画出示意,教师给予引导,找出梯形的上底、下底和高。)

②问题:根据分析,你能算出大坝的横截面积吗?(生试做,教师巡视给予指导。)

③选代表板演,集体纠错。问题:你是怎么考虑的?在计算时应该注意哪些问题?为什么要“除以2”?

2.完成做一做。

一辆汽车侧面的两块玻璃是梯形的,它们的面积分别是多少?

①学生试做。

②订正。提问:计算时应注意哪些问题?

3.判断。

(1)平行四边形面积是梯形面积的2倍。()

(2)两个面积相等的梯形能拼成一个平行四边形。()

四、总结归纳

今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?

多边形的面积课件(篇8)

教学目标

1.进一步掌握平行四边形、三角形、梯形面积公式的推导过程,能运用公式正确、熟练地计算它们的面积,并能解决一些简单的实际问题。

2.培养初步的想像能力和抽象概括能力。

3.渗透在生活中处处有数学,事物间互相联系互相转化的辩证唯物主义观点。

教学过程

一、激情导入

1.微机出示餐厅图。

谈话:这是老师家里的餐厅,如果按这样的方案来装演,你需要了解哪些信息?(动画演示各种装饰材料的形状及装饰过程。使学生感到铺地砖需要知道地面的面积,做窗帘用多少布也与面积有关系。)

2.谈话:看来要想装演得既美观又经济,还需要掌握好多关于面积的知识呢!这节课我们一起来复习平面图形面积的计算。如果你做老师,你会带领大家复习哪些内容呢?

随着学生的回答板书:平行四边形的面积、三角形的面积、梯形的面积、长方形的面积、正方形的面积。

谈话:说得真好。老师真希望你们人人争当小老师,做学习的主人。这节课我们要比一比,谁的收获多。

[评析:数学源于生活。教师创设生活情境,让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。]

二、自主整理

1.投影出示小组讨论题。

(1)这5种图形的面积分别是怎样计算的?

(2)这些面积计算公式是怎样推导出来的?

小组讨论。借助课前准备的学具,说说推导过程,每人可选自己最喜欢的图形说给小组成员听。

全班交流。学生选择图形说面积公式的推导过程。

2.整理完善知识结构。

谈话:在小学阶段,我们首先学习的是长方形的面积计算公式,这是为什么?

结合学生汇报,指出:正方形、平行四边形、三角形、梯形的面积公式都与长方形的面积公式有联系。你能不能利用老师发的学具,把5种图形移一移、摆一摆,让人一眼就看出这些图形面积公式推导方法之间的联系。比一比,哪个小组摆得好!指名摆,并说明这样摆的理由。

看网络图,你发现了什么?使学生进一步认识到由长方形面积计算公式推导出正方形、平行四边形面积计算公式,由平行四边形面积计算公式推导出三角形、梯形面积计算公式。

讲述:由此发现,新旧知识之间有着密切的联系,我们在学习新知识时,都是把它转化成旧知识学习的。转化是一种很重要的思想,以后你在学习新知识时就可以运用转化的方法把它转化成学过的知识,再进行研究。

[评析:复习课上教师没有让学生机械地背诵公式,而是让学生通过摆图形,回忆推导过程,由在小学阶段,我们首先学习的是长方形面积计算公式,这是为什么?这一问题展开讨论,推动学生自主地把各种平面图形的面积计算与长方形联系起来。让学生通过操作、观察、分析,发现知识间的内在联系,顺利地形成合理的认知结构。]

三、运用公式

1.做复习第1题。

学生独立解答,核对。

提问:计算时注意什么?

2.判断正误。

(1)三角形面积等于平行四边形面积的一半。()

(2)长方形的面积是与它等底等高的三角形面积的2倍。()

(3)两个面积相等的三角形可以拼成一个平行四边形。()

(4)下图中平行四边形与长方形面积相等。()

(5)如果一个平行四边形和一个长方形面积相等,底和长也相等,那么高和宽也相等。()

(6)三角形的底越长,它的面积就越大。()

3.解决老师家餐厅装潢的问题。(出示餐厅图)

谈话:数学与我们的生活密切相关,还记得王老师家的餐厅吗?就让我们一起来解决大家提的问题吧。

(1)地面铺地砖问题:餐厅长4米,宽3米,高3米。地面铺的是边长5分米的方砖,算一算,装修时至少用了多少块方砖?(只要列式)学生独立完成。

(2)用同样的花布做成这样形状的窗帘和冰箱装饰套至少要多少布?

学生独立计算。

提问:你们是怎么算的?按你们算出的面积买布行吗?为什么?

学生讨论。

谈话?想问题时要联系生活实际。考虑到商店里的布往往和裁剪成的布块形状不同,再加上缝制时要缝边,所以买布时要多买一些,这也是刚才提出的问题中加上至少两个字的原因。

[评析:在练习中,教师设计了基本题,即计算各种图形的面积的练习;变式题,即判断正误,再次加深理解面积公式;开放题,即联系生活,运用知识解决实际问题。这样既巩固了本节课所学知识,又把数学和生活联系起来,让学生人人学习有价值的数学。这种安排也使整节课首尾呼应。]

四、总结收获

提问:这节课我们解决了许多问题,谁能说说,哪些给你留下了深刻的印象?

总评

荷兰着名的数学教育家弗赖登塔尔强调:学习数学的惟一正确的方法是实行再创造,也就是学生本人把要学的东西发现或创造出来,教师的任务是引导和帮助学生进行这种再创造的工作,而不是把现成的知识灌输给学生。本节复习课充分体现了这一点,引入新课富有挑战性,通过争当小老师,解决生活难题的情境,激发学生学习的热情。课中给学生提供自主探索的时间和空间,安排了大量有利于学生主动地进行操作、观察、交流的数学活动,给了学生较多的广泛参与的机会,而学生在自主探索和合作交流的过程中也进一步加深了对数学知识和数学方法的理解。整节课充分体现了学生是数学学习的主人,教师只是数学学习的组织者、引导者和合作者。

多边形的面积课件(篇9)

第五单元:多边形的面积

教学目标:

1、让学生通过动手操作、实验观察等方法,探索并掌握平行四边形、三角形和梯形的面积公式。

2、让学生用面积公式计算平行四边、三角形和梯形的面积,并能解决生活中一些简单的实际问题。

3、让学生认识简单的组合图形,会把组合图形分解成已经学过的平面图形并计算它们的面积。

4、让学生会用方格纸估计不规则图形的面积。教学重点和难点:

1、让学生通过动手操作、实验观察等方法,探索并掌握平行四边形、三角形和梯形的面积公式。

2、让学生用面积公式计算平行四边、三角形和梯形的面积,并能解决生活中一些简单的实际问题。

3、让学生认识简单的组合图形,会把组合图形分解成已经学过的平面图形并计算它们的面积。课时安排: 9课时。

《平行四边形的面积》教学设计

武晓丽

教学目标:

1、通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2、通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括推导能力,发展学生的空间观念。

3、培养学生的合作意识和探究精神。

教学重点:探究平行四边形的面积计算公式。

教学难点:推导平行四边形的面积计算公式。

教具准备:每人准备一个平行四边形纸片和一把剪刀,多媒体课件。教学过程:

一、口算:(看谁算得又对又快,2分钟。)

25×4= 125×8= 15×4= 80÷5= 81÷3= 720÷8= 3600÷90= 45×4= 6.9÷23 = 8.8÷11 = 0.25×4 = 2.1÷0.3 = 63÷0.9 = 2÷0.4 = 10÷2.5 = 0.18÷0.6 = 7.2÷9= 8.32÷0.8= 0.32÷0.08= 100×0.68=

二、创设情境:(多媒体出示:)

我们小区有很多花坛,今天我给大家带来了两个花坛,你们能告诉老师是什么图形?能比较哪个花坛大吗?比较花坛的大小就是比较花坛的什么呢?(一块长方形花坛,一块平行四边形花坛。)板书课题:平行四边形的面积

三、自主学习(提出问题)

我们知道长方形面积的计算方法是?(长×宽)使用什么方法总结出来的?(数方格)我们现在也用这种方法来算一算平行四边形的面积。

学生用数方格的方法数一数,并把结果记载到87页的表格中。(一个方格代表1平方米,不满一格的都按半格计算。)

四、合作探究

思考:从表格中的数据,你发现了什么?1)、它们的面积相等。

2)、长方形的长和宽分别和平行四边形的底和高相等。3)、平行四边形的面积可用它的底和高求出。

2、学生探索、收集资源: 思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的长方形来求面积呢?想一想,该怎么做?

五、精讲点拨:

1)、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,平行四边形的面积等于长方形的面积。

2)、指名学生在黑板上展示,多媒体课件演示。

长方形的面积 = 长×宽

平行四边形的面积 = 底×高

3)、学习用字母表示公式:我们用S表示平行四边形的面积, a表示它的底, h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S =a×h)

4)、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)

小结:我们用一剪和一平移的方法称为割补 法。把平行四边形转化成了长方形,总结出了平行四边形的面积公式。

六、巩固检测:

1、多媒体课件展示:

88页例1、89页2题目、90页6题。教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。

2、作业:练习十九第7题,第9题。

课堂小结 :

本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?

板书设计:

平行四边形的面积

长方形面积= 长×宽

平行四边形面积= 底×高 S = a h

教学反思:

多边形的面积—三角形的面积

武晓丽

教学目标:

1、掌握三角形的面积计算公式,并能正确计算三角形的面积。

2、经历探索三角形的面积计算公式的过程,能用三角形的面积计算公式解决简单的实际问题。

3、培养学生观察、比较、推理和概括能力。

教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。教学难点:三角形的面积计算公式的推导过程和实际应用。教学准备:多媒体课件。教学过程

一、口算:

500×5= 270×3= 13×6= 14×3= 45×3= 24÷3= 17×5= 90×5= 31×4= 25×6= 18×5=

24×4=

25×4=

20×9=

42÷7= 45÷5= 12×9= 16×3= 32+8= 13×3=

二、复习导入

1.我们学过了哪些平面图形的面积?计算这些图形的面积公式是什么? 2.今天我们就一起来研究“三角形的面积”。

3.学习新知识之前,我们共同回忆一下平行四边形的面积计算公式是怎样得出的?

三、自主学习:(提出问题)

我们每个人都要佩带红领巾。红领巾是什么形状的?(三角形)如果要想知道它用多少面料,要怎样解决呢?(求出三角形的面积。)怎样求三角形的面积?

四、合作探究;

1、研讨要求:

可以把三角形转化成我们已经学过的图形。请每个小组拿出三角形学具,并说一说你发现了什么?(每组都有完全一样的直角三角形、锐角三角形、钝角三角形各两个。)

用两个同样的三角形拼一拼,并思考:能拼出什么图形?拼出图形的面积你会计算吗?拼出的图形与原来的三角形有什么联系?

2、学生探索、收集资源:

分小组操作,并利用下表做好记录。

五、精讲点拨;

1、我们是用两个()三角形,拼成了一个()。原三角形的底等于拼成的()形的();原三角形的高等于拼成的()形的();原三角形的面积等于拼成的()形的()。

2、小组汇报操作结果:让学生边汇报边把转化后的图形贴在黑板上。学生可能选用两个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以得出一个三角形的面积=底×高÷2。

也可能选用两个完全一样的直角三角形拼成了一个长方形,拼成的长方形的长就是直角三角形的一条直角边(可以看作直角三角形的高),拼成的长方形的宽就是直角三角形的另一条直角边(可以看作直角三角形的底)。拼成的长方形的面积=长×宽,每一个直角三角形的面积就是这个长方形面积的一半,所以得出一个三角形的面积=底×高÷2。

还可以选两个完全一样的钝角三角形拼成一个平行四边形。同理,每一个钝角三角形的面积是这个平行四边形面积的一半。所以,得出一个三角形的面积=底×高÷2。

3、小结:不管是锐角三角形、直角三角形,还是钝角三角形,只要是两个完全一样的三角形,就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形的面积的一半。

4、是不是任意一个三角形的面积都是任意一个平行四边形面积的一半呢? 教师可以通过任意一个三角形和与其不等底等高的平行四边形的纸板,让学生通过对比得出:三角形的底和高必须与平行四边形的底和高相等时,这个三角形的面积才是平行四边形的面积的一半。三角形的面积是与它等底等高的平行四边形的面积的一半。

5、让学生说一说三角形的面积的计算公式是什么?如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,那么三角形的面积计算公式可以写成:S=ah÷2(板书)

6、教学教材第92页例2。出示第92页例2:红领巾的底是lOOcm,高是33cm,它的面积是多少平方厘米? 让学生独立计算,再集体订正。

说一说都是怎样做的,并根据学生的汇报板书计算过程: S=ah÷=100×33÷2

=1650(cm2)

7、让学生再说一说:为什么要除以2? 学生可能会回答:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。

六、巩固检测

1、完成教材第92页“做一做”第1题。先让学生找一找三角尺的底和高,使学生明白直角三角形的任意一条直角边作底,另一条直角边就作高。如底是7.2cm,高是12.5cm。再进行计算。

2、完成教材第92页“做一做”第2题。第3题。板书设计:

三角形的面积

三角形的面积是与它等底等高的平行四边形的面积的一半。

三角形的面积=底×高÷例2

S=ah÷2

=100×33÷2

=1650(cm2)教学反思:

多边形的面积—梯形的面积

武晓丽

教学目标:

1、在平行四边形、三角形的面积计算公式推导的基础上,引导学生采用合作探究的形式,概括出梯形面积计算公式。正确、较熟练地运用公式计算梯形面积,并能解决一些生活中的实际问题,提高学生发现问题、分析问题、解决问题的能力。

2、通过自主探究,小组合作,在操作、观察、比较中,培养学生的想象力、思考力,进一步发展学生的空间观念。

3、渗透数学迁移、转化思想,让学生感受数学与生活的紧密联系.提高学生学习数学的兴趣

教学重点:理解并掌握梯形的面积公式.会计算梯形的面积。教学难点:自主探究梯形的面积公式。

教学准备:多媒体课件。剪刀、两个完全一样的梯形纸片(如等腰梯形、直角梯形

教学过程

一、口算:

50×7= 25×3= 11×7= 24÷8= 11×7= 25×6=

60×7=

27×3=

56+8=

24×4= 21×6= 16×3= 35×2= 33×3= 16×3= 36×2= 28×3= 45×2= 24÷3= 11×8=

二、复习导入

1.导入:这一单元我们已经学习了三角形和平行四边形的面积计算,谁来说一说它们的计算公式?(平行四边形的面积=底×高,用字母表示是S=ah;三角形面积=底×高÷2,用字母表示是S=ah÷2。)

2.揭题:生活中的图形除了三角形和平行四边形外,还有梯形,这节课我们就利用转化的方法来研究梯形的面积

三、自主学习(提出问题)

出示教材第95页情境图。引导学生观察:车窗玻璃是什么形状的?(梯形)思考:怎样求出它的面积呢?你能用学过的方法推导出梯形的面积计算公式吗?

四、合作探究:

1、研讨要求:

猜测到把梯形转化成平行四边形、三角形、长方形等,来推导它的面积计算公式。让学生利用梯形学具验证自己的猜测。

2、学生探索、收集资源:

学生用剪刀剪一剪,再拼一拼。

五、精讲点拨;

1、(1)用两个一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的(上底+下底),这个平行四边形的 高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2 出示推导过程:

(2)把一个梯形剪成两个三角形。梯形的面积=三角形1的面积+三角形2的面积=梯形上底×高÷2+梯形下底×高÷2=(梯形上底+梯形下底)×高÷2 出示推导过程:

(3)把一个梯形剪成一个平行四边形和一个三角形。梯形的面积=平行四边形面积+三角形面积 =平行四边形的底×高+三角形的底×高÷2 =(平行四边形的底+三角形的底÷2)×高

=(平行四边形的底×2+三角形的底÷2×2)×高÷2

=(平行四边形的底+平行四边形的底+三角形的底)×高÷2 因为梯形的上底=平行四边形的底,梯形的下底=平行四边形的底+三角形的底,所以梯形的面积=(上底+下底)×高÷2。

2、小结:大家都是把梯形转化成我们学过的图形,推导出它的面积计算方法,无论哪种方法我们都可以推导出梯形的面积计算公式。

板书:梯形的面积=(上底+下底)×高÷用字母表示:S=(a+b)×h÷2

3、教学教材第96页例3。

出示教材第96页例3情境图和横截面的示意图,引导学生观察情境图并思考:横截面是一个什么形状?(这是一个梯形;而且有两个角是直角,是一个直角梯形。)直角梯形的高在哪里?你能理解这个横截面的含义吗?

通过交流,学生能明白:直角梯形的高也是它的一个腰长。这个梯形的上底是36米,下底是120米,高是135米。

你能利用所学的知识计算一下这个直角梯形的面积吗?

六、巩固检测:

1.完成教材第96页“做一做”。

2.完成教材第97页“练习二十一”第3题。3.完成教材第97页“练习二十一”第4题。板书设计:

梯形的面积

梯形的面积=(上底+下底)×高÷2 用字母表示:S=(a+b)×h÷2 例3:S=(a+b)h÷2

=(36+120)×135÷

2=156×135÷2

=10530(m2)教学反思;

《组合图形的面积》教学设计

武晓丽 教学目标:

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。教学重点:探索并掌握组合图形的面积计算方法。教学难点:理解并掌握组合图形的组合及分解方法。教学过程:

一、口算:

31×4= 25×6= 18×5= 24×4= 25×4=

20×9= 42÷7= 45÷5= 12×9= 16×3=

32+8= 13×3= 11×6= 700×4= 32×3=

12×6= 800×7= 300×7= 75×2= 28×5=

二、创设情境,激趣导入。

1.同学们,我们已经学习了哪些多平面图形?(生回答)

2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)

三、自主学习:(提出问题)

1、说说你学过哪些平面图形 ?

2、说说这些图形的面积计算公式?

四、合作探究: 1研讨要求:

书中99页,这些组合图形里有哪些学过的图形?

4、是房子侧面的形状,它的面积是多少平方米?怎样计算?

2、学生探索、收集资源:

五、精讲点拨;1)分割法:

将整体分成几个基本图形,求出它们的面积和。2)添补法:

用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么? 学生举例并解答:结合学生自己举的例子解答讲解

(1)把这面墙看成是一个正方形和一个三角形,分别求出面积,再合并

5×5+5×2÷

2(2)连接三角形的顶点和底面中点,将这面墙分成两个完全一样的梯形,求出一个梯形的面积再乘2

[5+(2+5)]×(5÷2)÷2×2(3)把这面墙看成一个长方形,去掉两个完全一样的三角形:

(5+2)×5-2×2.5÷2×2

六、巩固检测: 101页练习二十二第1题、第2题:

板书设计:

组合图形的面积

(1)把这面墙看成是一个正方形和一个三角形,分别求出面积,再合并

5×5+5×2÷

2(2)连接三角形的顶点和底面中点,将这面墙分成两个完全一样的梯形,求出一个梯形的面积再乘2

[5+(2+5)]×(5÷2)÷2×2(3)把这面墙看成一个长方形,去掉两个完全一样的三角形:

(5+2)×5-2×2.5÷2×2

教学反思:

《平行四边形的面积》教学反思

新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、注重数学专业思想方法的渗透

在数学教学中,要注重数学专业思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。

二、注重学生数学思维的发展

数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

三、注重了师生互动、生生互动

新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。这个关键问题仅仅依赖于课件演示,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,课件的演示只给了学生形象上的感知,正因为在这个关键问题上疏忽,导致了拓展教学中,一个长方形拉成平行四边形后,有什么变化?这个问题上,学生茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。由于我担心时间不够,这个问题也被忽视。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。

教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

dg15.com编辑推荐

多边形的面积课件(集锦14篇)


资料的定义范围较大,可指代生产资料。当我们的学习遇到难题时,经常都会用到资料进行参考。有了资料的协助我们的工作会变得更加顺利!所以,你有哪些值得推荐的资料内容呢?以下内容是小编特地整理的“多边形的面积课件(集锦14篇)”,感谢您的参阅。

多边形的面积课件【篇1】

教学内容:

1、平行四边形面积的计算(第12-14页)

2、三角形面积的计算(第15-18页)

3、梯形面积的计算(第19-21页)

4、实践活动:校园的绿化面积(第26-27页)

教材分析:

教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等小系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。

教学目标:

1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。

2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。

3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。

4、使学生在操作、思考的过程中,提高对空间与图形内容的学习兴趣,逐步形成积极的数学情感。

教学重点:平行四边形、三角形、梯形的面积计算公式

教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。

课时安排:9课时

多边形的面积课件【篇2】

教学目标

1.进一步掌握平行四边形、三角形、梯形面积公式的推导过程,能运用公式正确、熟练地计算它们的面积,并能解决一些简单的实际问题。

2.培养初步的想像能力和抽象概括能力。

3.渗透在生活中处处有数学,事物间互相联系互相转化的辩证唯物主义观点。

教学过程

一、激情导入

1.微机出示餐厅图。

谈话:这是老师家里的餐厅,如果按这样的方案来装演,你需要了解哪些信息?(动画演示各种装饰材料的形状及装饰过程。使学生感到铺地砖需要知道地面的面积,做窗帘用多少布也与面积有关系。)

2.谈话:看来要想装演得既美观又经济,还需要掌握好多关于面积的知识呢!这节课我们一起来复习平面图形面积的计算。如果你做老师,你会带领大家复习哪些内容呢?

随着学生的回答板书:平行四边形的面积、三角形的面积、梯形的面积、长方形的面积、正方形的面积。

谈话:说得真好。老师真希望你们人人争当小老师,做学习的主人。这节课我们要比一比,谁的收获多。

[评析:数学源于生活。教师创设生活情境,让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。]

二、自主整理

1.投影出示小组讨论题。

(1)这5种图形的面积分别是怎样计算的?

(2)这些面积计算公式是怎样推导出来的?

小组讨论。借助课前准备的学具,说说推导过程,每人可选自己最喜欢的图形说给小组成员听。

全班交流。学生选择图形说面积公式的推导过程。

2.整理完善知识结构。

谈话:在小学阶段,我们首先学习的是长方形的面积计算公式,这是为什么?

结合学生汇报,指出:正方形、平行四边形、三角形、梯形的面积公式都与长方形的面积公式有联系。你能不能利用老师发的学具,把5种图形移一移、摆一摆,让人一眼就看出这些图形面积公式推导方法之间的联系。比一比,哪个小组摆得好!指名摆,并说明这样摆的理由。

看网络图,你发现了什么?使学生进一步认识到由长方形面积计算公式推导出正方形、平行四边形面积计算公式,由平行四边形面积计算公式推导出三角形、梯形面积计算公式。

讲述:由此发现,新旧知识之间有着密切的联系,我们在学习新知识时,都是把它转化成旧知识学习的。转化是一种很重要的思想,以后你在学习新知识时就可以运用转化的方法把它转化成学过的知识,再进行研究。

[评析:复习课上教师没有让学生机械地背诵公式,而是让学生通过摆图形,回忆推导过程,由在小学阶段,我们首先学习的是长方形面积计算公式,这是为什么?这一问题展开讨论,推动学生自主地把各种平面图形的面积计算与长方形联系起来。让学生通过操作、观察、分析,发现知识间的内在联系,顺利地形成合理的认知结构。]

三、运用公式

1.做复习第1题。

学生独立解答,核对。

提问:计算时注意什么?

2.判断正误。

(1)三角形面积等于平行四边形面积的一半。()

(2)长方形的面积是与它等底等高的三角形面积的2倍。()

(3)两个面积相等的三角形可以拼成一个平行四边形。()

(4)下图中平行四边形与长方形面积相等。()

(5)如果一个平行四边形和一个长方形面积相等,底和长也相等,那么高和宽也相等。()

(6)三角形的底越长,它的面积就越大。()

3.解决老师家餐厅装潢的问题。(出示餐厅图)

谈话:数学与我们的生活密切相关,还记得王老师家的餐厅吗?就让我们一起来解决大家提的问题吧。

(1)地面铺地砖问题:餐厅长4米,宽3米,高3米。地面铺的是边长5分米的方砖,算一算,装修时至少用了多少块方砖?(只要列式)学生独立完成。

(2)用同样的花布做成这样形状的窗帘和冰箱装饰套至少要多少布?

学生独立计算。

提问:你们是怎么算的?按你们算出的面积买布行吗?为什么?

学生讨论。

谈话?想问题时要联系生活实际。考虑到商店里的布往往和裁剪成的布块形状不同,再加上缝制时要缝边,所以买布时要多买一些,这也是刚才提出的问题中加上至少两个字的原因。

[评析:在练习中,教师设计了基本题,即计算各种图形的面积的练习;变式题,即判断正误,再次加深理解面积公式;开放题,即联系生活,运用知识解决实际问题。这样既巩固了本节课所学知识,又把数学和生活联系起来,让学生人人学习有价值的数学。这种安排也使整节课首尾呼应。]

四、总结收获

提问:这节课我们解决了许多问题,谁能说说,哪些给你留下了深刻的印象?

总评

荷兰着名的数学教育家弗赖登塔尔强调:学习数学的惟一正确的方法是实行再创造,也就是学生本人把要学的东西发现或创造出来,教师的任务是引导和帮助学生进行这种再创造的工作,而不是把现成的知识灌输给学生。本节复习课充分体现了这一点,引入新课富有挑战性,通过争当小老师,解决生活难题的情境,激发学生学习的热情。课中给学生提供自主探索的时间和空间,安排了大量有利于学生主动地进行操作、观察、交流的数学活动,给了学生较多的广泛参与的机会,而学生在自主探索和合作交流的过程中也进一步加深了对数学知识和数学方法的理解。整节课充分体现了学生是数学学习的主人,教师只是数学学习的组织者、引导者和合作者。

多边形的面积课件【篇3】

[教学目标]

1.掌握本单元所学的面积公式,能应用面积公式进行计算。

2.理解公式的算理,沟通知识之间的内在联系。培养学生利用所学知识解决实际问题的能力。

3.培养学生认真分析、认真思考的良好习惯。

[教学过程]

课前谈话:同学们,这个单元我们学习了平行四边形、三角形、梯形的面积及其计算。大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系。今天我们就来复习这部分知识。

老师在黑板上画出长方形后提问:长方形的面积公式是什么?(长方形面积=长×宽.S=ab)

板书:

教师提问:“根据长方形的面积怎样推导出平行四边形、三角形、梯形面积公式呢?”让学生互相说一说。学生讨论后,教师指名让学生说一说是怎么推导平行四边形、三角形、梯形面积公式的?学生边回答,教师边板书出示如下图形:

随后教师将这些图形用→连接起来。使学生看到这些公式的联系。

教师提问:在推导平行四边形、三角形和梯形面积公式的时候,我们运用了什么方法?学生回答后教师小结:推导平行四边形、三角形、梯形面积公式。根据转化的思想,运用了割补平行、旋转平移的方法,把所求的图形面积转化为学过的图形面积进行推导,这是一个重要的方法,以后学习新知识也要用这个方法。

教学意图:使学生清楚面积公式的算理,沟通知识之间的联系,而不是机械地识记公式。

1.判断题。

使学生清楚:底和高相等的梯形形状不一定相同,只有形状和面积都分别相等的梯形才能拼成一个平行四边形。

使学生清楚:只有在等底等高的情况下,平行四边形的面积才是三角形面积的2倍。

使学生清楚:三角形的面积等于底乘高除以2。如果两个三角形的高相等而底不相等,它们的面积也不相等。

要求学生独立判断,并说明理由。

2.计算下面图形的.面积。

让学生先识别每个图形是什么图形,想好求每个图形的面积应用什么公式,再独立列式计算。

做完后让学生说说计算图形面积时应注意什么?①看清是什么图形;②选择正确的公式;③正确的计算;④注意单位名称。

订正:(1)270平方厘米,144平方厘米,3.61平方米;(2)3.41平方米,4.5平方分米,357平方米

教学意图:培养学生的判断推理能力,会利用面积公式进行判断。

1.根据所给条件求面积。

(1)三角形的底是5分米,高是1分米。

(2)长方形的长是2厘米,宽是3厘米。

(3)平行四边形的底是4分米,高是2分米。

(4)梯形的上底是1厘米,下底是3厘米,高是2厘米。

要求学生口头列式说出结果,并想一想应用了哪个面积公式。

订正:(1)2.5平方分米,(2)6平方厘米,(3)8平方分米,(4)4平方厘米。

2.自己测量出求下面图形的面积所需的数据,并求出图形的面积。

订正时让学生说出是怎么测量的。测量时应注意什么。

3.下图是三角形小旗。同学们要做 6面这样的小旗,一共要用纸多少平方厘米?

4.一块平行四边形的地,底长是280米,高是57.5米。共收油菜籽3542千克,平均每公顷产油菜籽多少千克?

5.有一块平行四边形的地,(如图)分成三块种菜。第一块种西红柿,第二块种黄瓜,第三块种茄子。问:每种菜占地多少平方米?

订正:(1)3.8×4.4÷2=8.36(平方米)(2)4.2×4.4=18.48(平方米)(3)(5+1.2)×4.4÷2=13.64(平方米)

教师将本节课所复习的知识归纳总结。解答学生提出的疑问。

计算下面图形的面积。你能想出不同的解法吗?

多边形的面积课件【篇4】

说教材

本节课是人教版九年义务教育第九册82页整理和复习中的内容。这部分教材要求先把本单元学过的知识进行系统的整理,然后再通过混合练习复习巩固各种多边形面积的计算。在授课中笔者结合自己对《标准》的理解,体现出一些创新理念:不是让学生机械的背诵和默写公式,而是通过情境引入、剪切拼摆、合作学习、创造想象。算法多样、审美情趣等各环节来实现人人学有价值的数学,人人掌握必须的数学,不同的人在数学上得到不同的发展。

教学目标:

1、知识性目标:引导学生回忆、整理多边形面积计算公式的推导过程,能熟练应用公式进行计算,适时渗透事物之间是相互联系的辩证唯物主义观点。

2.能力目标:通过观察、测量、拼摆等实践活动,培养学生动手操作、分析比较、总结概括以及探究、解决实际问题的能力。

3、情感与价值观目标:将知识学习与生活实际相结合,使学生感受到学习的乐趣,发展创新思维和求异思维,培养学生积极的情感。

说教法、学法

1、尊重需要凸现主体

教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于转化这一重要数学思想有更深理解,从而进行学法指导。

2.激励创新加强整合

精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学中能动地构建知识体系,迸发出创新的火花。充分利用多种教育资源,引起讨论、展望未来、抒发豪情,既在数学课中渗透了德育,又使课堂从单一的学科教学走向多学科、多功能的整合。

3、亲身体验培养美感

培养学生感受美、创造美的能力是小学教育的目标之一。在教学中,教师充分让学生去想象,把各种图形之间的联系构造成一编幅优美的图画,使学生在愉快的数学活动中发掘美、欣赏美、创造美。当然,通过指示学生习惯于思维定势下的机械计算在现实生活中未必就美,体现出加强数学与生活的密切联系是新世纪数学教育改革的重要内容与发展方向。

说教学过程

一、情境引人

师:试举例我们主要学过哪些多边形?

生:长方形、正方形、平行四边形、三角形、梯形。

师:我们主要研究了它们的什么?(周长和面积)大家想知道人们是从什么时候开始研究这些图形的吗?

课件展示:古埃及有尼罗河(配水声),脾气暴躁时发洪水,洪水退去后人们将重新划分土地几何问题产生!

师:你在生活中了解到有哪些图形?

生:尖屋顶是三角形,桌面是长方形。

师:下面我们一起来对学过的多边形面积进行整理和复习。

(设计理念:数学最开始是人们在生产、生活中遇到问题进行思考研究而产生的。形象的多媒体演示,不仅使学生认识到几何图形的来由,也必将激发学生的学习兴趣,并把所学知识应用到生活中去。)

二、进行新课

(-)回顾公式推导过程

1、师:这里有许多大家学过的图形卡片,谁能领取一张说说它的面积公式?

主1:长方形的面积=长宽;生2:正方形的面积=边长边长;牛3:平行四边形面积=底高;

(学生随意抽取,能说出面积公式即可,出现问题,指名纠正。)

2.师:平行四边形的面积公式是如何推导的?请大家分小组讨论、剪拼,看能想到几种方法?(学生讲述时,教师电脑演示。)

生1:我沿着过平行四边形的顶点的高剪开,将它们排成一个长方形。主2:我沿着过平行四边形底边上一点的高剪开,将它们拼成一个长方形。生3:还可以沿着两个顶点的高剪下,两个三角形,将它们排成一个长方形。

生4:其实沿着平行四边形内任意一条高剪开,都可以排成一个长方形。

师:说得太好了!还有别的想法吗?

牛5:还可以沿着平行四边形斜边的重点,剪下两个小直角三角形,也能拼成一个长方形接着,教师取出两个完全一样的平行四边形:两个平行四边形能否接拼成长方形吗?

3、小组合作完成:回顾讨论三角形、梯形面积公式的推导过程。(教师巡视,个别指导。)

4、师:只通过一个图形来推导其它图形的面积公式,首先选谁?长方形正方形平行四边形

生1:正方形是特殊的长方形,所以最基本的是长方形。

生2:平行四边形只在推导三角形和梯形而积公式时用到,最基本的图形是长方形。

师:那么它们之间的关系能不能画出一幅图来表示?

小组讨论后,选派一名代表展不:

一组:按照小学阶段学习多边形顺序来绘编7字图

二组:我组展示的作品是网络图

三组:我们画出了一个行走的人。

四组:我组展示的作品是把这些图形制成知识树

五组:多边形面积公式都能统一到梯形面积公式,我们展示的作品是光芒四射

(设计理念:让学生经历、回顾多边形面积计算公式的推导过程是本节课的一个重要目标。本环节中,学生采用动手实践、合作学习等多样化的学习方式去自主发现多边形面积之间存在的必然联系,并应用学生喜爱的画图这一形式将这种联系展示出来,这样既起到了复习课应有的作用,又充分张扬了学生的创造个性。可以预见,学生在主动获取知识的同时,学习的积极主动性得到了激发,探索创新精神和实践能力得到了良好体现。)

目练习反馈

l、选择条件分别计算下列图形的面积。(单位:厘米)(图形略)

2、计算组合图形面积,有几种方法就用几种方法。@62+(6+8)(4-2)2@64+(8-6)(42)2@(2+4)62+8(4-2)2@84-(2+4)(8-6)2@642+8422(86)2@(8+6)422(8-6)2

(设计理念:课程标准强调数学课程的目标不只是让学生获得必要的数学知识、技能,还应当包括等方面的发展。但这并不意味不要基础知识和基本技能,恰恰相反,《标准》仍然认为,基础知识与基本技能是学生学习的重点。教师通过练习反馈环节测评学生对多边形面积计算公式的掌握和理解,训练学生思维的层次性、深入性和发展性。在组合图形面积计算方法的探索中,学生动眼观察、动脑思考、动手操作,把一个组合图形分解成几个已经学习过的基础图形,、达到练习趣味化、综合化。既培养了学生发散思维能力,又使学生在解决问题的能力和策略上得到培养。)

回展示图片

老古街-新建步行街

师:对比观察了两幅照片,大家有什么感受可以畅所欲言。

生1:我为日新月异的城市建喝彩!

生2:我想,规划设计人员在建设中肯定用到了我们今大所学的一些知识。

生3:我们要努力学习,用我们的智慧建设更美好的家园!

(设计理念:要落实新课标,教师必须更新教育观念,转变教学方式:将知识教学与能力培养相结合;使学生的数学学习与生活实际相联系;教育学生将个人成功与服务社会相统一。本环节通过让学生感受身边日新月异的变化,自然把学生从课内引向课外,从小课堂引向大社会,让学生在现实中理解和运用数学知识,以丰富和深化学习内涵。)

(四)欣赏美术作品《教师新居》

师:这是单位分给老师的新房,还没装饰,请大家帮老师简单设计一下好吗?

标示数据:①窗户:长1.6米,宽二1.2米;②三角柜:底1米,高0.6米;③睡床:长2米,宽1.5米。

求窗帘、三角桌布、床单备需多少布料?学生可以使用计算器进行计算。)

当学生汇报准确的计算结果后,教师贴上相等面积的布片,问:美吗?(学生纷纷咂嘴摇头。)那该怎么办呢?

(设计理念:脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。设计布置新居环节,意在强化学生数学意识的培养,使学生清楚地认识到数学来源于生活,学到的数学知识又应该应用于生活。

三、小结

通过这节课的学习,你有什么收获?

多边形的面积课件【篇5】

教材简析:

这部分内容是在学生学习了长方形、正方形和三角形的特征及长方形和正方形计算的基础上进行教学的,是今后学习立体图形的基础。

教学重点:

认识平行四边形的特征,探索平行四边形面积计算公式,正确使用平行四边形面积计算公式解决实际问题。

本信息窗呈现的是水产养殖场中虾池的场景。包含的信息有近似平行四边形的虾池及其平面示意图等。旨在引导学生提出有关虾池形状和面积的问题,展开对平行四边形的认识及计算的学习。

教学目标:

1、通过观察操作认识平行四边形;掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。

2、经历探索平行四边形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3、能运用平行四边形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

教学重难点:

探索平行四边形的特征,经历推导平行四边形计算公式的过程。

教学过程:

一、创设情景,提出问题

谈话:喜欢吃海产品吗?现在正是螃蟹,龙虾上市的季节.今天让我们先去水产养殖场看看好吗?

(出示信息窗中的虾池图片)观察图片,你发现了什么信息?

[设计意图]:通过水产养殖场的情景引入新课,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。

二、解决问题,探究新知

(一)虾池的形状

1、从情景中我们知道虾池是什么形状?(板书:平行四边形)

2、生活中你在哪些地方还见过平行四边形?

3、关于平行四边形你想知道些什么?

4、我们先一起研究平行四边形有什么共同的特征,好吗?

5、谁想根据你以前研究平面图形方法,说说我们应该从那些方面研究平行四边形?

设计意图:借助情景图中平行四边形的形状,让学生寻找生活中的平行四边形.进而产生探究欲望,确定本节课的研究问题,并引导学生说出应该从边和角两方面研究平行四边形.

(二)平行四边形的特征

1、谈话:要研究平行四边形,的有平行四边形,运用学具盒中的材料小组合作先动手创作一个平行四边形,比一比那个小组创作的又好又快!先在请同学们交流一下自己的做法和收获。

通过动手做,现在来猜一猜这些大小不同的平行四边形会有什么共同的特征?

2、学生交流.教师板书学生的猜测.

3、下面咱们以小组为单位,利用学具盒中的学具进一步验证大家的猜想的平行四边形的特征,将探究的结果整理到下表中

4、交流探究结果(小组间质疑补充)两组对边分别相等:用直尺量的方法来验证两组对边分别平行:用画平行线的方法来验证两组对角分别相等:用量角器的方法来验证

5、通过探究现在你能说说什么叫平行四边形吗?

小结:两组对边分别平行的四边形叫做平行四边形。

关于什么叫平行四边形你有什么问题吗?(如果学生说出长方形和正方形两组对边也分别平行,教师就点出长方形和正方形是特殊的平行四边形.)

设计意图:引导学生经历猜测、验证的过程,在猜一猜、量一量的过程中,加深对平行四边形的特征的认识。

(三)认识平行四边形的各部分的名称

1、谈话:养殖工人要从虾池的一边到对边去,怎样走最近?

2、设计:拿出练习纸在上面画一画

3、汇报:怎样设计的?为什么这样画最短?有多少种画法?

4、认识高和底:从平行四边形一条边上的一点到它的对边的垂直线段是平行四边形的高,用字母h表示;这条边是平行四边形的底,用字母a表示。

5、提问:这条底上有多少条高?教师介绍另一组对边上的底和高。

6、小结:平行四边形的一条底边上可以画无数条高,底和高要相对应。

设计意图:使学生在具体的情境中解决实际问题,既学到了知识又获得了成功的体验。

三、巩固练习,加强应用

1、自主练习第1题:你能从下图中找到平行四边形吗?

2、补充练习:两组对边分别平行的四边形一定是平行四边形。()

在四边形中两组对边分别相等,则两组对边分别平行。()

3、自主练习第8题中的要求改为:先画出平行四边形的高,再测量对应的底和高。

4、玩一玩:自主练习第2题,同桌合作,用4根硬纸条定成一个长方形框架,然后用手捏住它的两个角,向相反的方向拉动,你有什么发现?

(1)交流

(2)小结:底不变,高变了。

[设计意图]:练习题的设计是有层次的。第1题判断生活中的平行四边形,考查学生对平行四边形的认识;第2题重点是根据平行四边形的特征进行一系列练习;第3体在玩的过程中将所学的指示进一步延伸,了解长方形是特殊的平行四边形。

四、回顾反思,总结提升

谈谈这节课的收获

总设计意图:

本节课的设计充分关注了学生已有的知识经验,结合具体的问题情景,引导学生通过猜想、操作、实验、总结出了平行四边形的特征。教师没有将平行四边形的特征、各部分的名称等知识强加于学生,而是充分尊重学生原有的知识水平,结合具体情景引导学生动手动脑自主探究新知,尊重了学生的年龄特征和认知水平。

多边形的面积课件【篇6】

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:

理解三角形面积计算公式,正确计算三角形的面积.

教学难点:

理解三角形面积公式的推导过程.

学具准备:

每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

提问:

(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底高)

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

(一)推导三角形面积计算公式.

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼.

①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

4.用两个完全一样的锐角三角形拼.

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼.

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

7、引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

(3)三角形面积的计算公式是怎样推导出来的?为什么要加上除以2?(强化理解推导过程)

(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积.

(二)计算下面每个三角形的面积.

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

多边形的面积课件【篇7】

教学内容:梯形的面积计算

教学目标

1.使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。

2.通过操作,培养学生的迁移类推能力和抽象概括能力。

3.培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想

教学重点理解并掌握梯形的面积计算公式及推导过程。

教学过程

一、复习并引入课题

1.计算下面图形的面积。(单位:厘米)

2.三角形面积的计算公式是怎样推导出来的?为什么要“除以 2”?

3.教师出示场景图:生活中,我们能看到各种形状的物体,这辆小轿车的车窗是梯形的,仔细观察梯形有什么特点?(教师首先指出梯形各部分名称,让学生认识梯形的上底、下底和高)

问题:下面这个梯形你能指出它们的上底、下底和高吗?。

导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?

二、学生自己尝试并归纳和总结出梯形的面积公式。

1.你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。

2.学生操作,互相讨论。

3.根据讨论结果,完成88页书空,总结出梯形的面积公式。

4.汇报结果。提问:通过刚才的学习,你知道了什么?

引导学生明确:

①两个完全一样的梯形能拼成一个平行四边形。

②这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。

③梯形面积:(上底+下底)×高÷2

④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以 2”?

⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?

学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。

5.引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:

S=(a+b)h÷2

问题:要求梯形的面积必须知道哪些条件?为什么要“除以 2”?

总结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?

三、应用

1.出示例题:我国三峡水电站大坝的横截面的一部分是梯形,你能求出它的面积吗?

①首先根据题意画出示意图。分析已知条件以及求解内容。(生画出示意,教师给予引导,找出梯形的上底、下底和高。)

②问题:根据分析,你能算出大坝的横截面积吗?(生试做,教师巡视给予指导。)

③选代表板演,集体纠错。问题:你是怎么考虑的?在计算时应该注意哪些问题?为什么要“除以2”?

2.完成做一做。

一辆汽车侧面的两块玻璃是梯形的,它们的面积分别是多少?

①学生试做。

②订正。提问:计算时应注意哪些问题?

3.判断。

(1)平行四边形面积是梯形面积的2倍。()

(2)两个面积相等的梯形能拼成一个平行四边形。()

四、总结归纳

今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?

多边形的面积课件【篇8】

一、教学内容:

北师大版教科书五年级上册第四单元《多边形的面积》。

二、教学目标:

1.进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算图形的面积,并解决一些简单的实际问题。

2.回顾梳理本单元知识,能用思维导图清晰的整理单元知识网络,并熟练运用本单元知识解决实际问题。

3.经历单元复习过程,熟练掌握单元知识的同时,再次感受合作学习的重要性以及转化思想在数学学习中的重要性,培养良好的数学学习兴趣。

三、教学重点、难点:

重点:理解本单元所学的面积公式,理解计算公式之间的联系,形成知识网络。

难点:灵活运用平行四边形、三角形、梯形的面积公式解决问题。

四、配套资源:

《多边形的面积》ppt课件

《多边形的面积》单元小测、《多边形的面积》专项突破

五、学习设计

(一)课前设计

课前,教师发给学生如下复习资料,学生独立完成:

(二)课堂设计

1.谈话引入,揭示课题

师:我们在这个单元学习了哪些内容?

学生自由回答,教师引导有序回忆概念。

师:今天这节课我们就对“多边形的面积”进行整理和复习。

【设计意图:以一组简单并且特征明显的数为线索,让学生重现已有的概念,不仅能抓住要领,而且能提高复习的效率,为接下来建构知识网络做好准备。】

2.知识梳理,整体回顾

(1)比较图形的面积。

师:下面哪些图形的面积与图①一样大?为什么?

师:同学们说的很清晰。我们利用这样的分割、移补后,图形的面积是没有改变的。这就是数学上的“出入相补”原理。

出示课件:

(2)认识底和高

师:屏幕上的这些图形都不陌生,你能按要求画出它们的高吗?

师:用三角尺画图形的高,需要先确定什么?(确定图形中的某个顶点或图形边上的某个点)

师:接着该怎样画呢?(接着,思考如何用三角尺画出底上的垂直线段,其中一条直角边过图形中确定好的某个点,另一条直角边和图形的底重合。最后画出图形的高)

注意:画高时要用虚线,关注底和高的对应关系。

出示课件:

(3)多边形的面积

师:我们在之前的学习中已经会计算平行四边形、三角形、梯形的面积。你还记得我们是如何推导出这些公式的嘛?它们之间存在着什么样的联系呢?

小组交流,教师概括学生的回答,学生交流会后用课件动态依次出示:

小结:把平行四边形转化成了长方形,推导出了平行四边形的面积计算公式;

把三角形和梯形转化成了平行四边形,推导出了它们的面积计算公式。

3.完善思维导图

(1)引导整理,汇报交流

师:现在请小组集体整理/调整思维导图(知识网络)。

师:哪一组愿意来介绍下整理/调整后的的情况?

请2~3个小组的同学上台展示汇报知识整理图,说明这样整理的理由,其他小组的同学进行质疑,提出改进意见。

师:通过刚才的交流,同学们对本单元的知识有了进一步的认识,下面请各小组的同学看看你们小组整理的知识图有没有需要改进的地方,请通过改进,使你们组的知识图也更加完善。

各小组对本组的知识图进行反思和修改。

师:现在哪个小组的同学愿意来展示一下经过修改之后的知识整理图?

学生二次交流,全班评价,在共同讨论的基础上逐步完善,大致形成下面知识思维导图。

【设计意图:让学生在共同交流的基础上进行改进,能够起到自我反思、自我修正的作用,使学生对知识的理解进一步加深,认识进一步升华。】

4.典型题目练习,综合应用知识

(1)计算下列图形的面积。

【知识点】平行四边形、梯形、三角形的面积计算。

【答案】平行四边形的面积:24×15=360(cm)

梯形的面积:(14+26)×22÷2=440(cm)

三角形的面积:42×7÷2=147(dm)

【解析】代入相应的面积公式,求出相应的面积。

(2)一面用纸做成的直角三角形小旗,两条直角边分别长12厘米和20厘米。做10面这样的小旗,至少需要用纸多少平方厘米?

【知识点】灵活运用三角形的面积公式解决问题。

【答案】12×20÷2×10=1200(cm)

答:至少需要用纸1200平方厘米。

【解析】三角形的面积公式=底×高÷2,题目中已说明是直角三角形,并说明两条直角边分别是12厘米、20厘米。则根据公式可求出1个直角三角形的面积,题目中要求要做10面这样的小旗。因此再用1个直角三角形的面积×10即可解决问题。

(3)做《多边形的面积》单元小测、《多边形的面积》专项突破。

5.全课小结

师:通过对本单元的整理与复习,你有哪些新的收获?

全班相互交流自己的收获与不足。

《多边形的面积》整理复习

1.想一想:本单元我们学过那些平面图形的面积?它们的公式分别是什么?是怎样推导出来的?这些平面图形的面积计算公式之间有什么联系?

2.请用表格或画图的方式将本单元的知识进行整理。

3.在学习多边形的面积时,哪些题目容易出错?收集整理一些容易错误的题目。

多边形的面积课件【篇9】

《多边形的面积》整理与复习教学设计

王润敏

教学目标:

1、进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算这些图形的面积,并解决一些简单的实际问题。

2、通过回忆、交流,将“多边形的面积”这个单元所学的知识进行系统复习,形成完整知识体系;结合练习,加深对所学知识的理解,提高应用所学知识解决实际问题的能力。

3、感受系统复习的必要性与重要性,逐步形成学生自己整理所学知识的意识和良好的学习习惯。

4、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点难点:

重点是把通过归纳和整理本单元所学的面积公式,形成完整的知识体系,能正确应用这些面积公式解决实际问题。难点是把掌握多边形面积公式之间的联系。教法学法: 本课指导思想是发挥学生的主体作用,引导学生自主学习。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。教学过程:

(一)、回忆公式,夯实基础。小组合作交流。(思路提示)

1、本单元学过哪些多边形面积的计算公式?

2、他们是怎样推导出来的?

3、看图计算图形面积时,特别要注意哪些方面的问题?

(二)、全班交流,形成知识体系。

1、学生回答问题1,老师同步板书。

2、学生回答问题2,老师同步课件展示。(体现转化的数学思想)

3、学生回答问题3。学生先回答但不一定完整,再通过一些具体练习把答案补充更加完整。得到结论: 计算图形的面积时,特别要注意以下几个方面的问题 :

(1)计算三角形、梯形面积时一定不要忘记除以2。

(2)看图列式时,一定要找准相对应的底和高。

(3)单位不统一时,一定不要忘记单位转化。

(4)需要的条件不足时,用分步先算出来。

(三)、多样练习,促进理解。

1、重视利用填空、判断、选择题,巩固本单元概念。比如:填空题两个一样的梯形可以拼成一个(平行四边形),它的底边等于梯形的(上底加下底的和)。判断题:三角形的面积是平形四边形的一半。(×);两个三角形的高相等,它们的面积就相等。(×)

在选择题部分,强化了多边形面积计算时要注意底与高的“对应”。

2、在解决生活实际问题部分,我则补充了下列对比练习:

一块地近似平行四边形,它的底是50米,高12米。

(1)如果每平方米施化肥0.5千克,那么这块地共需施化肥多少千克?

(2)如果在这块地里种玫瑰,每棵玫瑰占地0.5平方米,这块地能种玫瑰多少棵?

小组合作完成,议一议、比一比第(1)和(2)问题的解题方法一样吗?为什么? 引导学生总结出解决问题需要注意:(1)、弄清楚图形,选择公式。

(2)、注意:条件要相对应,单位要统一,别忘了除以2(三角形、梯形)(3)、根据题意,弄清面积与其它数量间的关系.(四)、课堂小结:

这节课我们复习了多边形的面积,你有什么收获?

多边形的面积课件【篇10】

教学内容:

复习多边形的面积。

教学目标:

1、通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

2、通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

3、通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

教学重点:

整理完善知识结构,灵活运用面积公式解决问题。

教学难点:

沟通多边形面积公式之间的内在联系。

教学准备:

有关的课件。

教学过程

一、构建网络,新知汇总

师:同学们,咱们在第五单元里学习了平行四边形、三角形和梯形的面积及其计算,而且,还接触到了组合图形的面积,大家不仅要会利用面积公式求面积,还要掌握面积公式之间的联系,学会观察组合图形的组成。今天,我们就来复习这部分知识。(板书课题:多边形面积的复习)

师:那么我们是如何根据长方形的面积推倒出平行四边形、三角形和梯形的面积公式呢?请大家从你的头脑记忆库里提取下面的知识,看看谁的记忆库最充实?

讨论:平行四边形、三角形和梯形的面积公式是怎样推导出来的?

师:同位同学可以商量商量。(学生汇报:教师演示)

师:大家在回忆推导公式的过程中,本着把新知转化为旧知的原则,找到了几个面积公式之间的联系。通过这样的梳理,大家对我们的面积公式是不是更加熟悉了。(边说边出示图。见板书设计)

引导学生观察,从左往右看,根据长方形的面积公式可以推导出其他图形的面积公式,从右往左看,我们在探讨一种新的图形面积时,都是把它转化成已学过的图形来计算。

二、查漏补缺,错误汇总

师:现在你们的记忆库中还有内存吗?那,就请大家想一想,你们在利用公式解决问题时有什么容易出错的地方或是需要大家注意的地方?

根据学生的回答归纳:1.弄清图形,选择公式。2.找对应的底和高。3.注意单位换算。4.三角形和梯形的面积别忘了除以2.5.解决问题时,弄清面积与其他数量的关系。6.看清组合图形是由哪几个简单图形组成的,找简单的解决方法。7.已知面积,求底或高可以用方程解。)

师:看来同学们都特别的善于总结和观察,下面,我们就利用前面的复习来做几组练习。

三、综合练习,巩固提高

(一)按要求解答。(只列式,不计算)

1、平行四边形底是4分米,高2.7分米,求它的面积?

2、三角形面积是30平方米,底8分米,求它的高?

3、梯形的面积是84平方米,高10米,上底5米,求下底?

师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

(二)判断题:

1.三角形面积是平行四边形面积的一半。()

2.两个面积相等的梯形,形状是相同的。()

3.两个完全一样的梯形可以拼成一个平行四边形。()

4.两个三角形的高相等,它们的面积就相等。()

5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。()

看来,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

(三)解决问题

1.教材第113页第2题。

出示第2题,引导学生看题。

学生独立解答,并在小组中互相检查。

教师指名板演,然后集体订正。

师:通过计算这些图形面积,你想提醒大家什么?

(计算图形面积时,底和高要对应)

2.教材第116页练习二十五第9题。

(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

(2)算一算剩下的面积是多少。

方法一:4脳4-2脳2梅2=14(cm2)方法二:(2+4)脳2梅2+2脳4=14(cm2)

3.教材第116页练习二十五第10题。

(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

(3)全班交流,集体订正。

四、课堂小结。

多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

多边形的面积课件【篇11】

在教学实践过程中,教师的教学行为所产生的结果,往往是通过学生的表现体现出来的,所以只有经常反思学生在学习过程中出现的种种问题,分析其成因,才能帮助教师不断改进教学手段,以增强教学效果。现在结合学生在《多边形面积的计算》这一节课中的学习情况,谈一点自己的思考。

课堂上每一个多边形面积公式的推导过程都是比较清晰的。无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。

反思课堂教学,我觉得要在以下几个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式等实践活动,理解相关面积公式的来龙去脉,并且产生深刻的体会;

其次,激发学生积极思考的意识,多边形面积公式的推导过程中,可以让学生在拼图的过程中多说说自己的发现,多说说转化前后图形之间的联系,同桌说,指名说,以“说”促“思”,也能增强学生对本课知识的理解;再次,恰当评价学生的学习情况以及参与意识,要使学生明白,学习的目的不仅仅是会做作业,学会学习是很重要的一件事,要积极在学习过程中培养自己的学习能力。

有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。 另外,诸如千克和克,小时与分等单位之间的进率,遗忘也很多,有待于在复习梳理中加强记忆。学生为什么遗忘得那么严重呢?有人说,我们的教材知识点分得太散,不利于学生的记忆,这也许是原因之一。但是我想,学生在当初学习的时候,也许体验也不够深刻,所以导致容易遗忘。针对这种情况,教师应有意识地在平时的练习中,引导学生复习容易遗忘的.知识点,达到常温常新的目的,以减少遗忘。

批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。就拿这次单元测验来说吧,“压路机的作业宽度是6米,每小时前进6千米”,“一块长方形布长4米,宽16分米”等,单位名称不统一,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。

总之,从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。在以后的教学中,我还准备把做好预习作为培养学生自主学习的一种策略,并且结合学生实际情况,安排“每日一题”的练习,拓展书本知识,激发学生的兴趣,培养学生的学习能力,以确保学生扎实、有效地学好知识。

多边形的面积课件【篇12】

教学目标:

1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用。

3.培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

教具、学具准备:

1.用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教学过程:

一、复习

计算平行四边形的面积。

教师:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算。

板书:三角形面积的计算

二、新课

1.用数方格的方法计算三角形的面积。

教师:前面我们在学习长方形面积和平行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积。

2.通过操作总结三角形面积的计算公式。

让学生拿出两个完全一样的锐角三角形,提问:

用两个完全一样的锐角三角形能不能拼成一个平行四边形?让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆。

教师边说边演示拼的过程。先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180,到两个三角形的底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止,并把拼成的平行四边形图画在黑板上。然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?平移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个平行四边形后,教师再说明:平移是图上各点沿直线移动,旋转是一个点不动,其它的点都围绕着不动点转。提问:

每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?

学生回答后,教师强调:每个锐角三角形是拼成的平行四边形面积的一半。

三、小结。

教师结合黑板上分别由两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个平行四边形。提问:

这个平行四边形的底和三角形的底有什么关系?

这个平行四边形的高和三角形的高有什么关系?

这个平行四边形的面积和其中一个三角形的面积有什么关系?

平行四边形的面积怎样求?一个三角形的面积是这个平行四边形面积的一半,那么这个三角形的面积应该怎样求呢?

学生回答后,教师板书:

三角形的面积=底高2

为什么要除以2呢?学生回答后,教师指出:因为平行四边形的面积是底乘高,而三角形的面积是这个平行四边形面积的一半,所以三角形的面积是底乘高再除以2。

教学用字母表示三角形的面积公式。

教师:通常我们用字母a表示三角形的底,用字母h表示三角形的高,用字母S表示三角形的面积。

提问:

用字母怎样表示三角形的面积公式?学生回答后

教师板书:

S=ah2

多边形的面积课件【篇13】

教学目标:

1、掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,会计算组合图形的面积。

2、体验图形的平移、旋转以及转化的数学思想方法,促进空间观念得到进一步发展。

3、通过丰富的现实的数学活动,让学生获得探究学习的经历,体验学习的快乐和数学美感。

教学重点:

掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,会计算组合图形的面积。

教学难点:

通过丰富的现实的数学活动,让学生获得探究学习的经历,体验学习的快乐和数学美感。

教法学法:

1、尊重需要凸现主体。

教学中,不是由教师直接给出面积公式的复习内容,让学今被动接受。而是大胆放手,让学生自主回忆己学过的多边形面积公式的推导过程,予以汇报、展示成果。尊重学生的需要,尊重学生的主体地位。通过自主探究图形之间的内在联系,使学生对于转化这一重要数学思想有更深理解,从而进行学法指导。

2、激励创新加强整合。

精心设计练习,重视对学生思维能力的培养,打破求多边形面积一贯方法的定势,力求实现数学教学的开放性、发展性,使学中能动地构建知识体系,迸发出创新的火花。充分利用多种教育资源,引起讨论、展望未来、抒发豪情,既在数学课中渗透了德育,又使课堂从单一的学科教学走向多学科、多功能的整合。

3、亲身体验培养美感。

培养学生感受美、创造美的能力是小学教育的目标之一。在教学中,教师充分让学生去想象,把各种图形之间的联系构造成一编幅优美的图画,使学生在愉快的数学活动中发掘美、欣赏美、创造美。当然,通过指示学生习惯于思维定势下的机械计算在现实生活中未必就美,体现出加强数学与生活的密切联系是新世纪数学教育改革的重要内容与发展方向。

教学过程:

1、教师用启发提问的形式,让学生回顾本学期已学过的多边形的面积有那些?学生在回忆中交流,并结合对面积的推导过程的观察,进一步理解这三种面积公式的由来。

2、引导学生回答如下问题。

(1)要求面积,必须知道什么?

(2)三角形、梯形为什么要2.

(3)已知面积和高,如何求底?等问题,让学生进一步理解面积中个部分之间的关系。

3、及时练习:(多媒体出示)

(1)填表,计算面积。

(2)明辨是非。

(3)求阴影部分的面。

(4)解决问题(2个)重在引导学生进行审题训练,使学生在进行解决问题时要认真、仔细,明确所要解决的问题,并采取恰当的方法进行解决问题。

4、进行课堂练习。让学生在独立练习中巩固所学知识,提高解决问题的能力。教师在其中进行辅导。随后进行集体订正。针对存在的问题进行点拨。

5、小结。

通过这节课的学习,你有什么收获?

多边形的面积课件【篇14】

第四课时:多边形的面积复习

教学内容:教材P113第2题及练习二十五第7、20题。

教学目标:

知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

教学重点:整理完善知识结构,灵活运用面积公式解决问题。

教学难点:沟通多边形面积公式之间的内在联系。

教学方法:归纳整理,演示讲解;复习回顾。

教学准备:多媒体。

教学过程

一、 构建网络,新知汇总

二、整理复习

1.复习面积单位之间的进率。

说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

平方厘米 平方分米 平方米 公顷 平方千米

100 100 10000 100

2.及时练习

520平方米=(??)公顷?????300平方千米=( )公顷

4.2公顷=( )平方米 0.12平方米=( )平方分米

三、巩固深化

我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

(一)按要求解答。(只列式,不计算)

1、平行四边形底是4分米,高2.7分米,求它的面积?

2、三角形面积是30平方米,底8分米,求它的高?

3、梯形的面积是84平方米,高10米,上底5米,求下底?

师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

(二)判断题:

1.三角形面积是平行四边形面积的一半。( )

2.两个面积相等的梯形,形状是相同的。( )

3.两个完全一样的梯形可以拼成一个平行四边形。( )

4.两个三角形的高相等,它们的面积就相等。( )

5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。( )

看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

(三)解决问题

1.教材第113页第2题。

出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

教师指名板演,然后集体订正。

师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

2.1.课件出示教材第116页练习二十五第7题。

(1)学生独立解题。

(2)汇报评价。

3.课件出示教材第116页练习二十五第8题。

(1)学生独立解题。

(2)汇报评价。

4.教材第116页练习二十五第9题。

(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

(2)算一算剩下的面积是多少。

5.教材第116页练习二十五第10题。

(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

(3)全班交流,集体订正。

四、课堂小结。

多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

布置作业:

板书设计

多边形的面积总复习

多边形的面积课件(集合5篇)


每位教师都需要在上课之前准备一份完整的教案和课件,相信对于这一步骤老师们并不陌生。编写完整的教案是进行有效教学的重要条件之一,那么,制作教案和课件必须遵循哪些步骤呢?在我查阅中,我找到了一篇非常有用的“多边形的面积课件”,请继续关注我们的网站以获取更多相关信息!

多边形的面积课件(篇1)

本节课主要讲解多边形面积中的第一个图形面积,数学中非常重要的,平行四边形面积如何计算。

一、教学目标:

1.在学生理解的基础上掌握平行四边形面积计算公式,能正确地计算平行四边形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。

3.培养学生的分析、综合、抽象、概括和解决实际问题的能力。

二、教学重点:

理解并掌握平行四边形的面积公式

三、教学难点:

理解平行四边形面积公式的推导过程。

四、教学内容:

教材7-8页例1-例3

五、教学过程:

1.复习导入新课:说出学过的平面图形,在这些图形中,你会求哪些图形的面积?

2、探究新知:

教学例1:

(1)出示例1中的第1组图

要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流)

预设:学生大多会用数方格方法进行比较,对于出现转化教师应当鼓励,并加以引导。

(2)出示例1中的第2组图

你还能比较出这两个图形的大小吗?(学生交流,教师适当强调\转化\的方法,同时让学生思考第1组图也可以用转化的方法吗?)

(3)揭示课题:

师:今天我们运用已学过有关知识运用转化的数学思想来研究新图形的面积计算公式。

今天我们来研究平行四边形面积的计算。(板书课题)

3、教学例2:

(1)出示一个平行四边形

师:你能想办法把这个平行四边形转化成长方形吗?

(2)学生操作,教师巡视指导。

(3)学生交流操作情况

第一种:

①沿着平行四边形的高剪下左边的直角三角形。

②把这个三角形向右平移。

③平移至斜边重合。

第二种:

①沿着平行四边形的任意一条高将其剪为两个梯形。

②把左侧的梯形向右平移。

③倒过来斜边重合。

(4)小组讨论:比较两种转化方法,说说它们有什么相同的地方?

4、教学例3:

(1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第115页上任选一个平行四边形剪下来(课前准备),先把它转化成长方形,再求出面积并填写下表。

转化后的长方形平行四边形

长(cm)宽(cm)面积(cm)底(cm)高(cm)面积(cm)

(2)学生操作,反馈交流。

(3)小组讨论。

①转化后长方形的面积与原平行四边形面积相等吗?

②长方形的长和宽与平行四边形的底和高有什么关系?

③根据长方形的面积公式,怎样求出平行四边形的面积?

(6)学生总结,形成下面的板书:

长方形的面积=长宽

平行四边形的面积=底高

S=ah

5、巩固练习:

①指导完成试一试:

明确应用公式求平行四边形的面积一般要有两个条件,即底和高。

②指导完成练一练:

强调底和高的对应关系。

六、教学结束:

通过今天的学习有哪些收获?请同学们回去预习,下一课所学内容三角形面积。

多边形的面积课件(篇2)

《多边形的面积》整理与复习教学设计

王润敏

教学目标:

1、进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算这些图形的面积,并解决一些简单的实际问题。

2、通过回忆、交流,将“多边形的面积”这个单元所学的知识进行系统复习,形成完整知识体系;结合练习,加深对所学知识的理解,提高应用所学知识解决实际问题的能力。

3、感受系统复习的必要性与重要性,逐步形成学生自己整理所学知识的意识和良好的学习习惯。

4、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点难点:

重点是把通过归纳和整理本单元所学的面积公式,形成完整的知识体系,能正确应用这些面积公式解决实际问题。难点是把掌握多边形面积公式之间的联系。教法学法: 本课指导思想是发挥学生的主体作用,引导学生自主学习。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。教学过程:

(一)、回忆公式,夯实基础。小组合作交流。(思路提示)

1、本单元学过哪些多边形面积的计算公式?

2、他们是怎样推导出来的?

3、看图计算图形面积时,特别要注意哪些方面的问题?

(二)、全班交流,形成知识体系。

1、学生回答问题1,老师同步板书。

2、学生回答问题2,老师同步课件展示。(体现转化的数学思想)

3、学生回答问题3。学生先回答但不一定完整,再通过一些具体练习把答案补充更加完整。得到结论: 计算图形的面积时,特别要注意以下几个方面的问题 :

(1)计算三角形、梯形面积时一定不要忘记除以2。

(2)看图列式时,一定要找准相对应的底和高。

(3)单位不统一时,一定不要忘记单位转化。

(4)需要的条件不足时,用分步先算出来。

(三)、多样练习,促进理解。

1、重视利用填空、判断、选择题,巩固本单元概念。比如:填空题两个一样的梯形可以拼成一个(平行四边形),它的底边等于梯形的(上底加下底的和)。判断题:三角形的面积是平形四边形的一半。(×);两个三角形的高相等,它们的面积就相等。(×)

在选择题部分,强化了多边形面积计算时要注意底与高的“对应”。

2、在解决生活实际问题部分,我则补充了下列对比练习:

一块地近似平行四边形,它的底是50米,高12米。

(1)如果每平方米施化肥0.5千克,那么这块地共需施化肥多少千克?

(2)如果在这块地里种玫瑰,每棵玫瑰占地0.5平方米,这块地能种玫瑰多少棵?

小组合作完成,议一议、比一比第(1)和(2)问题的解题方法一样吗?为什么? 引导学生总结出解决问题需要注意:(1)、弄清楚图形,选择公式。

(2)、注意:条件要相对应,单位要统一,别忘了除以2(三角形、梯形)(3)、根据题意,弄清面积与其它数量间的关系.(四)、课堂小结:

这节课我们复习了多边形的面积,你有什么收获?

多边形的面积课件(篇3)

教学内容:教科书第70页一第72页的内容,完成练习十七的第l~3题。

教学目的:1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。

教学难点:通过操作和对图形的观察、比较,发展学生的空间观念。

教具准备:参照教科书第70页的方格纸,投影片;

教学过程:一、复习

1.出示方格纸上画的平行四边形。提问:方格纸上面的是什么图形?什么叫平行四边形?它有什么特征?

2让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)

教师:今天我们就来学习平行四边形面积的计算方法。

板书课题:平行四边形的面积

二、新课

1.用数方格的方法计算平行四边形的面积。

(1)我们在计算长方形的面积时,曾经用数方格的方法来计算它的面积,现在我们学习平行四边形面积的计算,也先用数方格的方法数一数它的面积是多少。请打开教科书,看第70页上边的平行四边形图,每一个方格表示一平方厘米,自己数一数是多少平方厘米?

请同学们认真观察一下,平行四边形在方格纸上出现了不满一格的,该怎么数呢?(可以都按半格计算。)然后指名说出数得的结果,并说一说是怎样数的。

(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。

(3)比较平行四边形和长方形。

提问:平行四边形的底和长方形的长有什么关系?平行四边形的高和长方形的宽呢?它们的面积怎么样?

启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的党分别相等,它们的面积也相等。

(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?

多边形的面积课件(篇4)

第四课时:多边形的面积复习

教学内容:教材P113第2题及练习二十五第7、20题。

教学目标:

知识与技能:通过复习,进一步理解多边形的含义,理解和掌握多边形面积计算公式,并能灵活应用公式解决一些问题。

过程与方法:通过整理,感受数学知识内在联系,完善知识结构,进一步理解转化的数学思想和方法。

情感、态度与价值观:通过操作、观察、比较,发展空间观念,渗透等积变换的数学思想,并使学生感受学习数学的乐趣。

教学重点:整理完善知识结构,灵活运用面积公式解决问题。

教学难点:沟通多边形面积公式之间的内在联系。

教学方法:归纳整理,演示讲解;复习回顾。

教学准备:多媒体。

教学过程

一、 构建网络,新知汇总

二、整理复习

1.复习面积单位之间的进率。

说说我们学过的面积单位有哪些,他们之间的进率是多少?板书:

平方厘米 平方分米 平方米 公顷 平方千米

100 100 10000 100

2.及时练习

520平方米=(??)公顷?????300平方千米=( )公顷

4.2公顷=( )平方米 0.12平方米=( )平方分米

三、巩固深化

我们对本单元的知识和方法进行了整理与复习,接下来我们要做一些练习进一步巩固,使同学们把这部分知识掌握得更好。

(一)按要求解答。(只列式,不计算)

1、平行四边形底是4分米,高2.7分米,求它的面积?

2、三角形面积是30平方米,底8分米,求它的高?

3、梯形的面积是84平方米,高10米,上底5米,求下底?

师小结:如果给出图形的面积,让我们去求底或高,除了可以变化公式以外,还可以用方程解答,这也是一个很好的方法。下面我们来看几道判断题。

(二)判断题:

1.三角形面积是平行四边形面积的一半。( )

2.两个面积相等的梯形,形状是相同的。( )

3.两个完全一样的梯形可以拼成一个平行四边形。( )

4.两个三角形的高相等,它们的面积就相等。( )

5.把一个长方形的木条框架拉成一个平行四边形,它的周长和面积都不变。( )

看来 ,同学们的分析和表达能力都很强,现在,我们来解决实际问题。

(三)解决问题

1.教材第113页第2题。

出示第2题,引导学生看题。学生独立解答,并在小组中互相检查。

教师指名板演,然后集体订正。

师:通过计算这些图形面积,你想提醒大家什么?(计算图形面积时,底和高要对应)

2.1.课件出示教材第116页练习二十五第7题。

(1)学生独立解题。

(2)汇报评价。

3.课件出示教材第116页练习二十五第8题。

(1)学生独立解题。

(2)汇报评价。

4.教材第116页练习二十五第9题。

(1)组织学生用剪刀把正方形纸片按题目要求剪一剪。

(2)算一算剩下的面积是多少。

5.教材第116页练习二十五第10题。

(1)组织学生在小组中讨论:怎样计算这个图形的面积呢?

(2)组织学生汇报,并展示求面积的方法,学生可能会有以下几种方法:

①将方格中的图形分割成几个简单的基本图形,分别求出基本图形的面积,再求和得出所求图形的面积。

教师强调分割的方法有多种,引导学生选择容易获取求面积时所需数据的方法进行分割。

②将方格中的图形添补成某个简单的基本图形,求出基本图形的面积,再分别减去各添补的图形面积,得出所求图形面积。

③已知小方格的边长为1cm,则每个小方格的面积为1cm2,通过数方格来确定图形的面积。

(3)全班交流,集体订正。

四、课堂小结。

多边形的面积计算关键在于熟练地运用多边形的面积计算公式;对于复杂的组合图形的面积的计算,在于巧妙地将组合图形分割或添补成若干个基本图形,进而通过基本图形面积的和或差得到组合图形的面积;对于不规则图形的面积的计算,可以将它分割或添补成已学的简单图形,或是用方格纸转化为已学过的图形来估算。

布置作业:

板书设计

多边形的面积总复习

多边形的面积课件(篇5)

教学内容:

1、平行四边形面积的计算(第12-14页)

2、三角形面积的计算(第15-18页)

3、梯形面积的计算(第19-21页)

4、实践活动:校园的绿化面积(第26-27页)

教材分析:

教学面积计算时,不仅教会学生面积计算的方法,更重要的是通过教学培养学生的能力。一是培养学生动手操作的能力,通过数方格、图形割补、拼、摆等小系列的操作,发展学生的空间观念。二是培养学生转化矛盾,探索规律的能力。教学中,要启发学生设法把所研究的图形转化成已会计算的图形,还要引导学生主动探索所研究的图形与已学过的图形之间的联系,从而找到计算方法,这样学生的印象深刻,思维也得到发展。

教学目标:

1、使学生通过剪拼、平移、旋转等方法,探索并掌握三角形、平行四边形和梯形的面积公式,能正确计算它们的面积。

2、使学生通过列表、画图等策略,整理平面图形的面积公式,加深对各种图形特征及其面积计算公式之间内在联系的认识。

3、使学生经历操作、观察、填表、讨论、分析、归纳等数学活动过程,体会等积变形、转化等数学思想,发展空间观念,发展初步的推理能力。

4、使学生在操作、思考的过程中,提高对空间与图形内容的学习兴趣,逐步形成积极的数学情感。

教学重点:平行四边形、三角形、梯形的面积计算公式

教学难点:理解三种图形面积公式的推导过程,运用公式解决面积的计算问题。

课时安排:9课时

平行四边形面积课件


笔者经过精心挑选以及整理了一系列与“平行四边形面积课件”相关的文章,供各位参考查阅。为了更好的教学效果,教师们需要提前制作好科学规范的教案与课件,相信这并不陌生。制作良好的教案与课件可以有效地帮助促进学生的学习,相信这些资料一定能对您有所帮助!

平行四边形面积课件(篇1)

一、教学目标

(一)知识与技能

让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。

(二)过程与方法

通过操作、观察和比较,发展学生的`空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。

(三)情感态度和价值观

通过活动,培养学生的探索精神,感受数学与生活的密切联系。

二、教学重难点

教学重点:探索并掌握平行四边形面积计算公式。

教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。

三、教学准备

平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。

四、教学过程

(一)创设情境,激趣导入

1。创设情境。

(1)呈现教材第86页单元主题图。(PPT课件演示)

1。怎么制作PPT课件算平行四边形面积

2。五年级上册数学组合图形面积教案

3。PPT模板怎样制作平行四边形面积推导动画

4。PPPT怎么制作动画课件计算平行四边形面积

5。五年级上册数学图形与几何教案

平行四边形面积课件(篇2)

教学目标:

1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法

2、能用平行四边形面积的计算方法解决简单的实际问题。

3、在操作、观察、比较中,渗透转化的思想方法。

4、在探究活动中,体验到成功的快乐。

教学重点:

推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。

师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?

1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?

生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)

那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

1)独立自主探究:

师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?

师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。

2)小组内交流:

师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。

3)学生汇报:

师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)

师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示

(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)

师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)

师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah

师:现在我们来算一下铺这块平行四边形草坪要用多少钱?

1、求下列图形的面积是多少?

2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)

3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)

(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。

课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:

数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。

学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。

探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。

平行四边形面积课件(篇3)

教学内容:

小学数学五年级上册第87——88页

教学目标:

知识与技能目标:

理解并掌握平行四边形面积计算公式。

过程与方法目标:

能够运用公式解决实际问题。

情感态度与价值观:

通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

教学重难点:

(1)教学重点:平行四边形面积计算公式的推导和运用。

(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

教学用具:

1、课件

2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

学情分析:

这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

教学过程:

一、激情导课

(大屏幕出示校园情景图)

同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

1、探究平行四边形面积计算公式。

2、运用公式解决生活中的实际问题。

师随着学生的回答在课题前板书:探究和运用

师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

二、民主导学

任务一:自主探究平行四边形的面积计算方法。

同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

展示交流:

1、先请数方格的小组上台展示。

预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

(对小组进行评价)

师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

2、请用割补法的小组上台展示自己的研究成果。

预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

(师随着生的表述板书)

长方形的面积=长×宽

平行四边形的面积=底×高

(对小组进行评价)

预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

(对小组进行评价)

预设:(3)、师演示。

师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

任务二:解决问题

出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

自主学习:独立在练习本上解答,完成后与小组内同学交流。

展示交流:注意指导学生的书写格式。

三、检测导结

1、计算下面每个平行四边形的面积。

2、已知下面图形的面积和底,怎样求出它的高?

以上三题,做对一道得一颗星,全部做对得三颗星。

集体订正,组内互批。

反思总结:请同学们谈谈这节课的收获吧!

平行四边形面积课件(篇4)

一、说教材

平行四边形的面积的教学是在学习了几何初步知识、长方形、正方形的面积计算以及平行四边形、三角形和梯形的认识的基础上安排的,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。长方形面积计算公式是平行四边形面积计算公式的基础,而平行四边形面积计算公式又是后面学习三角形和梯形面积计算的依据。因此这节课的内容在整个教材体系中起到承上启下的作用。于是我在教学时,将充分运用转化迁移思想,重视学生动手操作与实践,引导学生用已学的旧知去获取新知,构建新的认知结构。

二、说教法学法

本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性。利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

三、说学生

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成过程。

四、说教学目标及重难点

按照三个维度的要求,本节课的目标确定为三个:

1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。

2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。

3、培养学生观察、分析、概括、推导和解决实际问题的能力。

4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

教学重点:

理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积,

教学难点:

通过转化的方法理解平行四边形的面积计算公式。

教学准备:

多媒体课件;让每个学生准备一个平行四边形纸片和一把剪刀。

五、说教学设计思路

学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征,会画平行四边形的高。为了让学生更好的理解掌握平行四边形面积公式。因此,在教学中让学生经历猜想操作验证推理的过程,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形面积转化成长方形面积,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想感受到数学知识的应用价值。

六、说教学环节

我将整个教学过程划分为四步:

1、复习长方形的面积计算公式。

再现长方形面积计算公式和平行四边形的特征,温故知新,为推导平行四边形的面积公式作好铺垫。

2、用数格子的方法求平行四边形的面积使学生感受到这种方法误差大又有一定的局限性,激发寻找另一种方法。猜想平行四边形的面积可能和什么有关,让学生带着这个思考题进入探究平行四边形的面积计算的思维之中。

本环节教师呈现带有方格的平行四边形,让学生凭借独特思考,同桌交流互评的渐进过程进行充分的自主探究,再亲历和体验中初步感悟计算平行四边形的方法。这样设计,使得做到本节课的重点突破,为后面进一步学习面积公式做好铺垫。

3、动手操作,验证猜想:平行四边形面积的计算方法。

为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。

通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。

4、实践运用,深化认识

数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:

(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。

(2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。

(3)开放练习,培养学生解决问题的能力。

平行四边形面积课件(篇5)

各位老师:

大家好!

我今天说课的课题是《平行四边形面积的计算》。

首先,我对本节课的教材进行一些简要的分析:

本课内容是苏教版国标本小学五年级上册第二单元第一课时的内容。这部分内容以长方形面积公式为基础,引导学生探索和应用平行四边形的面积公式而平行四边形面积公式又是进一步探索并掌握三角形、梯形面积计算的基础。在此之前,学生已经认识了平行四边形的特征,掌握了面积的意义和长方形面积计算公式。学好这部分内容,有助于学习之后的三角形、梯形的面积公式。

教材安排了3道例题。例1引导学生把稍复杂的图形转化成相对简单的、熟悉的图形,例2引导学生通过平移把平行四边形转化成长方形。例3先让学生分组操作,探索平行四边形与转化成的长方形之间的联系,再通过讨论、思考推导出平行四边形的面积公式。“试一试”“练一练”和练习二的习题主要让学生应用公式计算平行四边形的面积和解决简单的实际问题。

根据上述教材结构与内容分析,考虑到五年级学生已有的认知水平以及生活经验,结合数学学科的特点及数学课程标准的要求,制定如下教学目标:

1、让学生经历观察、操作、分析、讨论、归纳等数学活动过程,探索并掌握平行四边形的面积公式,能正确计算平行四边形的面积,并应用公式解决简单的实际问题。

2、让学生体会转化方法的价值,进一步体会“等积变形”的思想方法,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

3、让学生在动手操作、探索思考的过程中,提高对“空间与图形”内容的学习兴趣,逐步形成积极的数学学习情感。

根据数学课程标准与教材,结合学生的基础,我确立了如下的教学重点、难点。本课的教学重点是平行四边形面积的计算公式,难点是理解平行四边形面积公式的推导过程。

最后我来说一说这一堂课的教学过程

本节课大致分为以下几个环节:

一、激发兴趣,初步体会转化思想

课开始,呈现例1中的第一组图形,图中第一个是不规则图形,第二个是正方形。首先让学生仔细观察这两个图形的面积是否相等。然后组织学生开展小组讨论,接着在进行全班交流的过程中,使学生清楚知道:它们的面积相等,有两种比较方法,一是数方格,二是通过割补、平移后转化成规则图形。再呈现例1中的第二组图形,让学生用第二种方法来比较这组图形的面积的大小,学生分组活动后指名回答。在此基础上通过谈话揭示课题并板书:平行四边形面积的计算。

要培养学生主动获取知识的能力,应以学生的生活经验和已有知识为依托,根据数学学科特点注重渗透数学思想和方法,因此,在教学例1时引导学生把稍复杂的图形转化成简单的、熟悉的图形,让学生初步感受转化方法在图形面积计算中的作用,激活了学生已有的知识经验,顺应和促进了学生的思维,为进一步的探索新知提供基本思路。

二、自主探究,掌握平行四边形的面积公式

这个环节主要分为两个层次:

第一层次:教学例2

首先呈现画在方格纸上的平行四边形,让学生分组讨论把图中的平行四边形转化成长方形的方法。然后让学生各自拿出准备好的平行四边形和剪刀来剪一剪、拼一拼,并在操作完后请同桌互相检查是不是把平行四边形转化成了长方形。再让学生展示自己的剪拼方法,并说说是怎样思考的。接着引导学生发现“它们都是沿着什么剪的?”,思考“为什么要沿着高剪开?”,启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。让学生猜想“把平行四边形转化成长方形后,图形的什么变了?什么没变?”,讨论“是不是任意一个平行四边形都可以转化成长方形?”是学生清楚的知道:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。

第二层次:教学例3

首先让学生观察教科书第127页的三个平行四边形,分别说出它们的底和高各是多少厘米,并填写在书本的表格中。然后让学生把平行四边形剪下来后转化成长方形,再把转化成的长方形的长和宽填写在表格里,并计算出长方形的面积。完成之后组织学生小组讨论书本上的三个问题:

(1)转化成的长方形与平行四边形的面积相等吗?

(2)长方形的长和宽与平行四边形的底和高有什么关系?

(3)根据长方形的面积公式,怎样求平行四边形的面积?

在全班交流的过程中,引导学生逐步抽象出平行四边形的面积公式,并板书:平行四边形的面积=底×高。最后让学生思考:“如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么怎样用字母来表示平行四边形的面积公式?”结合学生的回答,板书:S=ah。

《数学课程标准》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式。因此,这个环节充分为学生提供了动手实践、自主探索的机会,让学生经历充满着观察、猜想、操作、实验、推理、归纳等探索性与挑战性的活动,既使学生理解了平行四边形的面积公式,感受转化的数学思想,又有利于激发学生参与探索活动并发现规律的兴趣。

三、应用公式,解决实际问题

“试一试”是一道简单的实际问题,首先让学生独立解答,再指名板演,集体订正时使学生清楚知道求平行四边形的面积要有两个条件,即底和高。之后的“练一练”有3个标明了底和高各是多少的平行四边形,先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。同时也让学生指一指每个图形的另一组底和高分别在什么位置,让学生清楚知道计算平行四边形面积时,要用底和相应的高相乘。另外,要让学生注意到,如果图形的基本单位不同,那么计算得到的结果的单位也不一样。

通过“试一试”、“练一练”中基本题的练习,分别让学生直接应用公式计算平行四边形面积,解决简单的实际问题,巩固对公式的理解。

四、巩固深化,加深对公式的理解

“练习二”的第1题是让学生在方格纸上画出与图中长方形面积相等的两个形状不同的平行四边形,首先让学生思考“要使画出的平行四边形面积与长方形面积相等,它的底和高分别是多少?”然后再让学生各自在书上作图,同桌互相检查。第2题先让学生指出每个平行四边形的底和高,再让学生各自测量,最后根据公式计算面积。第3题是一道简单的实际问题,告诉学生用图中标出的数据计算出来的面积是近似值,这种近似的测量和计算在实际生活中经常用到。第4题先让学生独立解答,再说说解决问题的思路。第5题则先指名读题,说出题目要求后独立算出长方形的周长和面积并共同订正。然后拿出课前准备好的长方形木框,演示拉成平行四边形,让学生思考“把这个长方形框拉成平行四边形,周长变化了没有?面积呢?为什么?”继续拉动长方形,让学生看一看、想一想面积的变化有什么规则。通过观察、比较后使学生明确长方形拉成平行四边形后周长没变,面积变了;拉成的平行四边形越是显得扁平,它的高就越短,面积也就越小。

通过多种形式的练习活动,既巩固了本节课学习的知识,又进行了新旧知识的联系与沟通。练习的最后一题,通过实际操作,让学生进一步感受长方形与平行四边形的周长与面积的联系。

五、课堂总结,全面升华

在课结束前,让学生说说通过这节课的学习有哪些收获。

通过总结,既可以让学生回顾本节课所学的内容,进一步加深印象,又可以培养学生的概括能力。

平行四边形面积课件(篇6)

一、说教材

(一)说课内容:人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第80-81页的内容。

平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。

(二)教学目标

知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的价值。

(三)教学重点、难点、关键点:

教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。

教学难点:平行四边形面积公式的推导方法—转化与等积变形。

关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。

(四)教具、学具准备:多媒体课件、实物投影仪、平行四边形卡片、剪刀。

二、学生分析:

学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

三、说教法、学法教法:

(一)说教法

1、发展迁移原则

运用迁移规律,把平行四边形转化成长方形进行教学。注意从旧到新,体现“温故知新”的教学思想和等积转化这种重要的数学思想。

2、学生为主体,教师为主导的教学原则

针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。

3、以实物教具、学具作为辅助手段进行教学,体现直观、形象原则。

4、运用探究式教学方法,教会学生自主合作、动手实践、观察交流的探究式学习方法。

5、教学设计联系生活实际进行教学,渗透数学无处不在的的思想,培养学生用数学知识解决实际问题的意识。

(二)说学法

学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。

1、小组合作学习,培养学生团结协作的合作意识和能力。

2、引导学生用探究式学习方法,会用这种学习方法进行自主学习,并留给学生足够的探究学习的时间。所以我计划用20分钟左右的时间让学生在老师的引导下通过动手操作、发现、讨论、总结、推导出平行四边形的面积计算公式。以此来突出这节课的重点,突破难点。

3、我用:两个老师家的车位是否能调换?贯穿整个教学活动,把教学活动变成了帮忙解决生活问题的活动,联系生活实际,并且做到首尾呼应,过度自然。使学生明白:数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

四、说教学过程

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:

一、情景引入,激趣导课(课件出示两张车位照片)

(一个长方形的车位和一个平行四边形的车位)

创设生活情景,问:为了生活方便,能否交换两家的停车位?

揭示课题,并板书课题。

(设计意图:通过创设情景,提出问题,促使学生积极动脑猜想,要比较两个车位的面积,必须会计算长方形和平行四边形的面积。长方形的面积会求了,平行四边形的面积如何计算呢?从而引出本节课的课题:平行四边形的面积计算)

二、动手实践,探究发现。

1、指导学生预习课本81页的内容,使学生通过自学掌握平行四边形转化长方形的方法。

2、实践操作,提出猜想。

请同学们想一想,想好了小组交流,并动手用学具,联系学过的方法,在小组里讨论,看哪组能最快解决问题?

(1)学生小组合作,动手操作。

教师巡视指导。

(我在设计学具时,在平行四边形学具上画有高和任意斜线。意图是使学生在操作中明白:只有沿着高剪才能拼出长方形。)

(2)适时引导学生,围绕以下两个问题进行讨论:说说你发现了什么?

①拼出的长方形和原来的平行四边形比,什么变了,什么没变?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

3、交流汇报。学生先全班交流,教师在指名到实物投影仪上演示拼剪过程,并说出小组的发现。

4、教师课件演示,边演示边讲解。

5、强化拼剪过程及发现,推导成平行四边形面积公式。

6、前后呼应,解决悬念。

计算导入时的两个车位面积,得出结论:能调换两个车位,因为两个车位的面积相等。

7、课堂阶段性小结。

设计意图:新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的教学设计,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:实践——理论——实践。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。

三、尝试计算,强化练习。

1、口算。

(1)a=4m,h=3m,S=? (2)a=8cm,h=6cm,S=?

2、求下面图形的面积。

自选条件计算。

强调:求平行四边形的面积必须用底×高,不能底×邻边。

3、解决问题。

(1)拓展延伸(机动练习)

(2)有一块平行四边形铁板,底边长25米,高是13米,每平方米重7.8千克,这块铁板重多少千克?

练习设计第一题:用字母出示底和高,求面积。第二题:看图自选条件计算。第三题:文字出示已知面积和底,求平行四边形的高。题目呈现方式的多样,难度阶梯式深入,有层次的练习设计,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。从字母到图形再到文字,层层深入,强化提高。把拓展练习设计为机动练习是为课堂生成做的一种预设。

四、课堂小结,巩固新知。

1、这节课我们学习了什么知识?

2、有关平面图形的知识,你还想知道什么?

设计意图:有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。

平行四边形面积课件(篇7)

一、教材结构与内容简析:

《平行四边形面积的计算》是九年义务教育课程标准实验教材小学数学北师大版第九册第二单元第3节课的内容。三年级时,学生已经理解了面积的意义,掌握了长方形面积计算的方法。四年级时,又认识了平行四边形、三角形和梯形等图形的基本特征。本册教材在此基础之上安排了平行四边形等平面图形的底和高以及面积计算教学,分为两个单元:“图形的面积(一)”主要学习了平行四边形、三角形和梯形的面积计算方法;“图形的面积(二)”则学习组合图形面积的计算及简单的不规则图形面积的估计等知识,因此本单元在几何学习中有着承上启下的作用。

计算平行四边行的面积是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的学习运用会为学生学习后面的几何知识奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。

二、教学目标及重难点的确立:

根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,我确立如下教学目标。

1、知识与能力目标:理解并掌握平行四边形面积计算公式,能够应用公式解决实际问题。

2、过程与方法目标:让学生在动手操作中,实践探究;在公式推导过程中,发展空间观念及多种感官并用的综合能力。

3、情感态度目标:通过公式推导,向学生渗透事物之间的普遍联系,培养其辩证唯物主义思想;通过解决实际问题,提高学生对生活中处处有数学的认识。

本单元的教学内容是从研究平行四边形的面积开始,再以平行四边形面积的计算为基础,推出三角形、梯形的面积计算方法,这对后续的教学很重要,所以我认为平行四边形面积计算公式的推导及应用是教学的重点。而引导学生运用转化的方法,启发学生探索规律,找出不同图形参数之间的对应关系,对学生的能力要求较高,所以本节课的难点定为使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。本节课的关键就在于通过学生的动手操作,获得直观感受,在观察和比较中找到转化前后的图形关系。

三、设计理念和思路:

《数学课程标准》中明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”因此我先创设探索性和开放性的问题情境,激发求知欲望;然后让学生独立思考、自主探索;再以小组合作学习的形式,引导学生建立转化思想,把问题化归到原有的知识体系中,在充分的实践活动中,找到推导平行四边形面积计算公式的方法,解决平行四边形面积如何计算的问题;又应用探索出来的计算公式解决实际生活中的问题;最后回顾学习过程,总结学习方法,再现平行四边形面积计算公式的发现过程,突出教学重、难点。

四、教法:

数学是一门培养和发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性,使他们在求知的学习状态中展示个性。同时,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务,让学生真正成为学习的主人。

本次课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。”本节课我着重引导学生通过动手操作,观察和比较,建立起“新”“旧”图形之间的联系,培养学生应用旧知识解决新问题的能力。这一学习方式的培养,会对后续的学习有很大帮助。

五、教具、学具准备:

多媒体课件、平行四边形纸片、剪刀、直尺。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。

六、教学程序及设想:

为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,特结合本班学习特点,设计如下环节。

(一)、复习铺垫引入探究。

有意义的学习是在建立在学生原有认知基础上的,必要的知识铺垫是搭起新知与旧知的桥梁。课一开始,我利用课件出示两个长方形让学生说出长方形的面积计算公式并计算出面积。紧接着,再出示一个不规则的几何图形让学生快速找到它的面积,并说说是怎样想的。此时,学生会利用所学过的数方格的方法计算出它的面积,因为前几节课的铺垫,学生也会通过观察发现,如果这个不规则图形凸起部分剪下,把它割补到缺口处,就把这个图形转化成了长方形,通过计算长方形的面积即可得到不规则图形的面积。这样的设计,让学生既复习了数方格的方法,又初步渗透了等积,转化的思想,为后面的学习打下了伏笔。

随之,我又运用课件创设情境,出示一块长方形草地与一块平行四边形草地,请学生比较这两块草地面积的大小。此时学生的思维被激活了,教学也就自然进入了第二个环节。

(二)自主探究合作交流。

从学科本身来讲,学科的概念原理体系只有和相应的探究过程及方法结合起来,才能有助于学生形成一个既有肌体又有灵魂的活的知识结构,如果没有多样化的思维过程和认知方式,没有多种观点和碰撞、论争和比较,结论就难以获得。

在学生积极的讨论与探究中,两种方案可能产生:(一)用数方格的方法数一数。(二)用转化割补的方法变一变,把平行四边形转化为长方形。

结合这多种方案,我顺势引导;怎样才能把平行四边形转化为长方形呢?这时学生迫切需要想办法来验证。为给学生创造一个广阔的空间,充分发挥其潜能,鼓励学生大胆尝试,主动探究,我安排了以下教学活动:

(1)想一想:怎样把平行四边形转化为长方形。

(2)议一议:交流思考方法,小组内达成共识。

(3)做一做:通过剪一剪、移一移、拼一拼的方法,将平行四边形“转化”成长方形。

在操作、展示的基础上,学生又开始了更深入的讨论:1、你能发现原来的平行四边形与现在的长方形有什么关系?2、你能根据这些关系得出平行四边形得出平行四边形面积的计算方法吗?

通过探究、思考、讨论,学生会发现:将一个平行四边形通过剪、拼后转化为一个长方形(或是一个正方形),平行四边形的面积等于长方形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着,让学生自学平行四边形面积的字母表示形成,再次加深公式的记忆。

这样,学生在动手中思维,要思维中动手,不仅品尝了探索成功的喜悦,更使学生在理解中掌握了知识,发展了思维。继而解决课一开始的情境问题。

任何技能技巧只有在练习中才能和提高,练习是数学教学中不可缺少的重要组成部分,此时学习进入了第三教学环节:

(三)实践运用拓展思维。

对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

1、基础练习:算出下面每个平行四边形的面积。(图在课件中)

出示的几个图形底和高的数值都很简单,但图形位置各不相同,这样可使学生加深对图形的认识,正确分清平行四边形底和高。

2、提升练习:量出平行四边形的一边底边和它的对应高,并分别算出它们的面积。(图在课件中)

在第一题的基础上,增加了让学生自己动手测量的要求。使这两道题也体现了“重实践”这一理念。

3、拓展练习:下图三个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。(图在课件中)此题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关。明确“同底等高的平行四边形面积相等”这一知识点。

接上题再问:当两个平行四边形的面积相等时,他们的底与高是否也相等?此问题提出必定会引起学生的讨论,因为已有了前一单元《找因数》一课的基础,所以这个问题对于学生来说在讨论中就能解决。

整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力。

(四)总结评价,体验成功。

总结活动,回顾探索新知的过程,同时引导学生反思、交流:“你有什么心得体会或建议与同学们分享?”

通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心。

(五)作业。

要求学生下课后任意选择一个平行四边形的实物测量,并计算出面积。从而总结全课,并将所学知识带入了生活,也为进一步的探索激发了兴趣。

七、板书设计:

我的板书设计简洁明了,突出重点。

平行四边形面积的计算

长方形的面积=长×宽

平行四边形的面积=底×高

S=ah

在整个教学过程中,我把充分调动学生的积极性贯彻始终,着重引导学生自己动手、动脑,自己观察、发现,自己概括、升华,主动参与到知识的探究过程中,掌握学习方法,从而真正体现了学生是学习的主人。

"多边形面积课件"延伸阅读