搜索

数学七年级上教案

发布时间: 2023.08.11

数学七年级上教案。

教案课件在老师少不了一项工作事项,写好教案课件是每位老师必须具备的基本功。教案是构建高效教育教学体系的基础之一,写好教案课件需要注意哪些方面呢?您在寻找好文章不妨看看“数学七年级上教案”,非常感谢您的支持欢迎参阅本文!

数学七年级上教案(篇1)

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况。

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

(1)必做题:教科书第18页习题1、2第1题

(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教学策略

一、激发学生的学习兴趣

兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。

激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。

比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。

二、建立民主平等的师生关系

素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。

三、建立多元化的教学目标

教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。

除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。

四、总结

综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。

数学七年级上教案(篇2)

1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。

2.掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程。

分析实际问题中的相等关系,列出方程。

出示教材问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

引导学生回顾列方程解决实际问题的基本思路。

学生讨论、分析:

2.找相等关系:

这批书的总数是一个定值,表示它的两个等式相等。

问题1:怎样解这个方程?它与上节课遇到的方程有何不同?

学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。

学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

3x-4x=-25-20.

等式的性质1.

归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

师生共同完成解答过程,或用框图表示。

学生讨论、回答,师生共同整理:

通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

师:解方程时,要合并同类项和移项。前面提到的'古老的代数书中的“对消”与“还原”,指的就是“合并同类项”和“移项”。

师出示教材例3.

解下列方程:(1)3x+7=32-2x;(2)x-3=32x+1.

教师引导学生按照框图所展示的过程,共同完成本例。

习题3.2第2,3题。

这节课要学习的方程类型是两边都有x和常数项,通过移项的方法化到合并同类项的方程类型。教学重点是用移项解一元一次方程,难点是移项法则的探究。在教学过程中一定要强调学生,移项的时候要注意变号。

数学七年级上教案(篇3)

教学目标:

1、知道解方程的意义和基本思路;

2、熟练了解算式各部分之间的数量关系,依据等式的性质解方程;

3、规范书写,与同学交流自己的算法。

4、对比练习二与练习一有哪些相同和不同的地方?

(二)根据等式的性质填空。

1、如果4a=20,那么:

2、想一想:4a=20可以得到4a+80=20×5吗?为什么?

3、试一试:如果4a=20,在4a( )=20÷4的括号中可以填( )或者( )。

1、有时,可以将4+( )=10中未知的数用字母表示,如:4+a=10、4+x=10??这种含有未知数的'等式叫方程。

2、用自己喜欢的方法,算一算下列字母代表的数字:

3、对比两种方法,说一说自己喜欢的方法。

3、学习P101例1;

4、学习P102例2。

四、课堂小结。

通过这节课的学习,你有哪些收获?你觉得要注意的地方是什么?

P104 1、2题。

七、课后反思。

数学七年级上教案(篇4)

1、教学资源分析

采用多媒体课件,导学案进行教学。

2、教学内容分析

在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。

解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x

●重点

一元一次不等式的解法。

●难点

不等式性质3在解不等式中的运用是难点

3、教学目标分析

●目标

1.使学生了解一元一次不等式的概念;

2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。

3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。

●目标解析

达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。

达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x

达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。

4、学习者特征分析

本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。

5、教学过程设计

、问题导入,探索新知1

问题1:举出一元一次方程的例子?

【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。

问题2:

将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?

通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。

问题3:学生举一元一次不等式的例子,学生判断。

师:判断下列各式是否是一元一次不等式?

①②③④⑤

【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。

、探索新知2

通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x

【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x

师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题

(1)解方程解不等式

2(1+x)=3 (1) 2(1+x)

学生回答不等式含有分母

师:怎样变形使不等式不含分母?

师生共同去分母解(2)题

师:通过(1)、(2)题的学习你有什么发现?

生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1.

师:在解(1)和(2)题的过程中注意些什么?

生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。

【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。

练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。

解:2x-2+2

2x-3x

-x

本节课你学会了些什么?

解一元一次不等式和解一元一次方程有哪些相同和不同之处?

【设计意图】通过问题引导学生再次回顾本节课。

布置作业

教科书习题9.2第1,2,3,题

目标检测

解一元一次不等式?,并把它的解集在数轴上表示出来.

6、教学评价的设计

本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。

数学七年级上教案(篇5)

教学建议

一、知识结构

二、重点、难点分析

本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.

本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.

三、教法建议

本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.

(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.

(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.

(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.

教学设计示例

一、教学目的

1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.

2.注意培养学生归纳、概括能力,以及运算能力.

3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.

二、重点、难点

重点:掌握单项式与单项式相乘的法则.

难点:分清单项式与单项式相乘中,幂的运算法则.

三、教学过程

复习提问:

什么是单项式?什么叫单项式的系数?什么叫单项式的次数?

引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).

新课 看下面的例子:计算

(1)2x2y·3xy2; (2)4a2x2·(—3a3bx).

同学们按以下提问,回答问题:

(1)2x2y·3xy2

①每个单项式是由几个因式构成的,这些因式都是什么?

2x2y·3xy2=(2·x2·y)·(3·x·y2)

②根据乘法结合律重新组合

2x2y·3xy2=2·x2·y·3·x·y2

③根据乘法交换律变更因式的位置

2x2y·3xy2=2·3·x2·x·y·y2

④根据乘法结合律重新组合

2x2y·3xy2=(2·3)·(x2·x)·(y·y2)

⑤根据有理数乘法和同底数幂的乘法法则得出结论

2x2y·3xy2=6x3y3

按以上的分析,写出(2)的计算步骤:

(2)4a2x2·(—3a3bx)

=4a2x2·(—3)a3bx

=[4·(—3)]·(a2·a3)·(x2·x)·b

=(—12)·a5·x3·b

=—12a5bx3.

通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:

①系数相乘为积的系数;

②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;

③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;

④单项式与单项式相乘,积仍是一个单项式;

⑤单项式乘法法则,对于三个以上的单项式相乘也适用.

看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.

利用法则计算以下各题.

例1 计算以下各题:

(1)4n2·5n3;

(2)(—5a2b3)·(—3a);

(3)(—5an+1b)·(—2a);

(4)(4×105)·(5×106)·(3×104).

解:(1) 4n2·5n3

=(4·5)·(n2·n3)

=20n5;

(2) (—5a2b3)·(—3a)

=[(—5)·(—3)]·(a2·a)·b3

=15a3b3;

(3) (—5an+1b)·(—2a)

=[(—5)·(—2)]·(an+1·a)b

=10an+2b;

(4) (4·105)·(5·106)·(3·104)

=(4·5·3)·(105·106·104)

=60·1015

=6·1016.

例2 计算以下各题(让学生回答):

(3)(—5amb)·(—2b2);

(4)(—3ab)(—a2c)·6ab2.

=3x

3y3;

(3) (—5amb)·(—2b2);

=[(—5)·(—2)]·am·(b·b2)

=10amb3

(4)(—3ab)·(—a2c)·6ab2

=[(—3)·(—1)·6]·(aa2a)·(bb2)·c

=18a4b3c.

小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.

数学七年级上教案(篇6)

一、教学目标

1、知识与技能

(1)、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

(2)、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法目标:

(1)、通过运用“||”来表示一个数的绝对值,培养学生的数感和符号感,达到发展学生抽象思维的目的

(2)、通过探索求一个数绝对值的方法和两个负数比较大小方法的过程,让学生学会通过观察,发现规律、总结方法,发展学生的实践能力,培养创新意识;

(3)、通过对“做一做”“议一议”“试一试”的交流和讨论,培养学生有条理地用语言表达解决问题的方法;通过用绝对值或数轴对两个负数大小的比较,让学生学会尝试评价两种不同方法之间的差异。

3、情感态度与价值观:

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想。通过“做一做“议一议”“试一试”问题的思考及回答,培养学生积极参与数学活动,并在数学活动中体验成功,锻炼学生克服困难的意志,建立自信心,发展学生清晰地阐述自己观点的能力以及培养学生合作探索、合作交流、合作学习的新型学习方式。

二、教学重点和难点

理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

三、教学过程:

1、教师检查组长学案学习情况,组长检查组员学案学习情况。(约5分钟)

2、在组长的组织下进行讨论、交流。(约5分钟)

3、小组分任务展示。(约25分钟)

4、达标检测。(约5分钟)

5、总结(约5分钟)

四、小组对学案进行分任务展示

(一)温故知新:

前面我们已经学习了数轴和数轴的三要素,请同学们回想一下什么叫数轴数轴的三要素什么

(二)小组合作交流,探究新知

1、观察下图,回答问题:(五组完成)

大象距原点多远两只小狗分别距原点多远

归纳:在数轴上,一个数所对应的点与原点的距离叫做这个数的。一个数a的绝对值记作,4的绝对值记作,它表示在上与的距离,所以|4|=。

2、做一做:

(1)求下列各数的绝对值:(四组完成)-1.5,0,-7,2

(2)求下列各组数的绝对值:(一组完成)

(1)4,-4;

(2)0.8,-0.8;

从上面的结果你发现了什么

3、议一议:(八组完成)

(1)|+2|=,1=,|+8.2|=;5

(2)|-3|=,|-0.2|=,|-8|=.

(3)|0|=;

你能从中发现什么规律

小结:正数的绝对值是它,负数的绝对值是它的,0的绝对值是。

4、试一试:(二组完成)

若字母a表示一个有理数,你知道a的绝对值等于什么吗

(通过上题例子,学生归纳总结出一个数的绝对值与这个数的关系。)

5:做一做:(三组完成)

1、(1)在数轴上表示下列各数,并比较它们的大小:-3,-1

(2)求出(1)中各数的绝对值,并比较它们的大小

(3)你发现了什么

2、比较下列每组数的大小。

(1)-1和–5;(五组完成)(2)

(3)-8和-3(七组完成)

5和-2.7(六组完成)6五、达标检测:

1:填空:

绝对值是10的数有()

|+15|=()|–4|=()

|0|=()|4|=()

2:判断

(1)、绝对值最小的数是0。()

(2)、一个数的绝对值一定是正数。()

(3)、一个数的绝对值不可能是负数。()

(4)、互为相反数的两个数,它们的绝对值一定相等。()

(5)、一个数的绝对值越大,表示它的点在数轴上离原点越近。()

六、总结:

1绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.

2.绝对值的性质:正数的绝对值是它本身;

负数的绝对值是它的相反数;0的绝对值是0.

因为正数可用a>0表示,负数可用a0,那么|a|=a(2)如果a

3、会利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小.

七、布置作业

P50页,知识技能第1,2题.

数学七年级上教案(篇7)

一、教学目标:

1、认知目标

正确理解乘方、幂、指数、底数等概念,在现实背景中理解有理数乘方的意义,会进行有理数乘方的运算。

2、能力目标

(1).通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。

(2).使学生能够灵活地进行乘方运算。

3、情感目标

让学生体会数学与生活的密切联系,培养学生灵活处理现实问题的能力。

二、教学重难点和关键:

1、教学重点:正确理解乘方的意义,掌握乘方运算法则。

2、教学难点:正确理解乘方、底数、指数的概念,并合理运算,

3、教学关键:弄清底数、指数、幂等概念,区分-an与(-a)n的意义。

三、教学方法

考虑到七年级学生的认知水平和结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。

四、教学过程:

1、创设情境,导入新课:

这一章我们主要学习了有理数的计算,其实有理数的计算在生活中无处不在。有一种游戏叫“算24点”,它是一种常见的扑克牌游戏,不知道大家有没有玩过?那我们现在约定扑克牌中黑色数字为正,红色数字为负,每次抽取4张,用加、减、乘、除四种运算使结果为24。

师:假如我现在抽取的是黑3红3黑4红5 (幻灯片放映图片)如何算24?

师:如果四张都是3呢?

生答:-3 - 3×3×(-3)=333324

师:现在老师把扑克牌拿掉一张红3,变成2个黑3,1个红3,大家有办法凑成24吗?

生:思考几分钟后,有同学会想出33(3)的答案

师:观察这个式子,有我们以前学过的3次方运算,那它是不是乘法运算?可以告诉大家,它是一种乘方运算,那是不是所有的乘方运算都是乘法运算,它与乘法运算又有怎样的关系?那我们今天就一起来研究“有理数的乘方”,相信学过之后,对你解决心中的疑问会有很大的帮助。(自然引入新课)

2、动手实践,共同探索乘方的定义

学生活动:请同学们拿出一张纸进行对折,再对折

问题:(1)对折一次有几层? 2

(2)对折二次有几层? 224

(3)对折三次有几层? 2228

(4)对折四次有几层? 222216

师:一直对折下去,你会发现什么?

生:每一次都是前面的2倍。

师:请同学们猜想:对折20次有几层?怎样去列式?

生:20个2相乘

师:写起来很麻烦,既浪费时间又浪费空间,有没有简单记法?

简记:22 23 24

师:请同学们总结对折n次有几层?可以简记为什么?

2×2×2×2×2

n个2

生:可简记为:2n

aaa?师:猜想:a生:an

n个a

师:怎样读呢?生:读作a的n次方

老师总结:求n个相同因数的积的运算叫乘方;乘方运算的结果叫幂;(教师解说乘方的特殊性),在an中,a

的因数),n叫做指数(相同因数的个数)。

注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.小试牛刀:

练习一:把下列各式写成乘方运算的形式:

6×6×6= (-3) (-3) (-3) (-3)=

2.1×2.1×2.1×2.1×2.1= 1

21

21

21

21

21

2=

注意:当底数是负数或分数时,底数一定要加上括弧,这也是辩认底数的方法.练习二、说出下列各式的底数、指数、及其意义

543431126

3.学生分小组讨论,总结乘方运算的性质

师:我们在进行有理数乘法计算的时候,要先确定积的符号,然后再把绝对值相乘。我们知道乘方是一种特殊的乘法运算,那对于乘方运算的结果如何来确定积的符号呢?用幻灯片出示表格,计算后,请同桌之间进行讨论并总结。 (师进行适当的引导,从底数和指数两方面进行考虑)

教师再对各种情况进行分析总结。

师生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正

数,0的任何正整数次幂都为0。

4、应用新知,尝试练习:在七年级数学晚会上,有6个同学藏在盾牌后面,男同学的盾牌上写的是一个正数,女同学的盾牌上写的是一个负数,这6个盾牌如下图所示,请算一算,盾牌后面男女生各有多少人?

(-3)15 ;(-5)8;(-7)6;(-10)25;123;(-16)9

乘方的运算是本节内容的第二个难点,符号确定后,学生往往容易犯直接拿底数和指数相乘的错误,所以准备了下面的例题,且要求学生写出相应的过程,加深对乘方运算的理解

例1:计算(教师板演一题后请学生板演)

(1) 26 (5) 62

(2) 73

44(3) (3) (6) 3

33(4)(4) (7) 4

比一比:(1)与(5)一样吗?(3)与(6)一样吗?(4)与(7)一样吗?

小结:一定要先找出底数和指数,确定符号后再去计算。

例12:计算:(1) 2522,(2)()3,(3),(4),(5)4 53533334

比一比:(2)与(3)一样吗?(4)与(5)一样吗?

总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来。

5、课外探究

一张纸厚度为0.05mm,把它连续对折30次后厚度将是珠峰的30倍。试着去计算一下,这句话对不对。

6、归纳总结,形成体系:

1、乘方是特殊的乘法运算,所谓特殊就是所乘的因数是相同的;

特别提醒:底数为负数和分数时,一定要用括号把负数和分数括起来

2

3、进行乘方运算应先定符号后计算,要确定符号要先确定底数和指数。

7、作业布置:习题2.6第1、2题;

数学七年级上教案(篇8)

一、说教材

1、教材的地位和作用:

科学记数法是义务教育课程标准实验教科书(浙教版),七年级上册第二章第二节的内容。在学生学习了有理数的加、减、乘、除、乘方等内容的基础上来学习的,本节课进一步学习大数的表示方法――科学记数法。科学记数法将在后几节近似数和有效数字中得以应用,也为科学记数法表示小数打下基础,本节课在实际生活中有广泛应用,同时也为学习科学中物理化学等知识的有力工具。

2、说教学目标

确立的依据:《数学课程标准》强调学生的数学活动,发展学生的数感,能用多种方式来表示数,能在具体的情境中把握数的相对大小关系,因此结合学生现有的对数学的认知情况,思维状况和学生学习过程的情感体验确立教学目标。

知识目标:理解科学记数法的意义,并学会用科学记数法表示比10大的数。

能力目标:积累数学活动经验,发展数感,进一步培养学生自主探究的能力。

情感目标:感受科学记数法的作用,培养团队精神,激发爱国热情。

3、说教学重点和难点

根据《数学课程标准》的要求及现阶段学生的学习实际能力确立重难点。

重点:进一步感受大数,用科学记数法表示大数。

难点:用科学记数法表示大数,提高学生归纳总结的能力。

二、说教法

为了突出学生的主体性,使学生积极参与到数学活动中来,采用了问题性教学模式。“以学生为主体、以问题为中心、以活动为基础、以培养分析问题和解决问题能力为目标”。结合先进手段采用讲解法、演示法、讨论法实施教学。

三、说学法

指导在前一阶段,已指导学生进行自主学习,学生的能力有一定的提高,因此这一节将继续指导学生通过动手、动口、动脑等活动,主动探索,发现问题;互动合作,解决问题;归纳概括,形成能力。增强数学应用意识,合作意识,养成及时归纳总结的良好学习习惯。

四、说教学过程设计

1、预习检测:

(1)用科学记数法表示下列各数:

230000; 15800…0(共31个0)

(以下是选做题)

(2)下列用科学记数法表示的数,原来各是什么数?

4.315 ×103; 1.02 ×106

(3)计算: (8.1 ×108) ÷ (9 ×105)

8.56 ×102 – 2。1

设计意图:

通过课前预习检测完成的情况,检查学生自主学习的能力,了解学生对本节课的疑惑。

2、创设情境导入问题:

中国的国土面积约为960 0000平方千米

07年第二季度美国摩托罗拉公司盈利—28000000美元

我国煤的储藏量达6000 0000 0000吨

天然气资源量约47 0000 0000 0000立方米

上面各资料有出现较大的数据,这些数记录过程中容易出错,那么有没有其它较为简便的方法来记录以上这些数据呢?

设计意图:

创设情境,激发民族自豪感,体会大数”读””写”的困难,从而导出课题。

3、探究新知

通过刚才出现的大数引出问题一:以上各数有些什么特点?问题二:有没有简单的记数方式?引导学生回答。

之后让学生观察回答10n的数的特征

讲解如何把图中出现的大数转换成一个数(只带一位整数的数)与10的n次幂乘积的形式。进而引入概念科学记数法:一般地,一个大于10的数可以表示成a×10的形式,其中1≤a

设计意图:

引出如何用科学记数法表示大数,通过表示方法总结出科学记数法的定义,并且能理解和掌握转换过程。真个板块也是本课的重点和难点处理掉,让学生感到自然过渡。这里体现了特殊到一般的认知规律。

4、运用新知解决问题

设计一个小游戏用科学计数法表示下列各数

设计意图:

玩是孩子的天性,让孩子在玩中去消化知识,采用”活动促发展”的基本思路,面向全体落实概念,营造课堂气氛,使每位同学积极投入,培养学生团结合作能力。

5、探究归纳

下列用科学记数法表示的数,原来各是什数?(指一般用十进制表示的数)

设计意图:

采用”自主探究”的形式,归纳总结反思,培养学生的概括归纳能力,逆向思维能力。

6、实战演练:

1、计算

2、测脉膊(动手实践题)

设计意图:

巩固新知,培养学生计算能力,动手能力,解决问题的能力,让学生感受到数学来源于生活,数学就在我们身边,培养学生学习数学的兴趣,发展学生的数感。

7、小结:成果发布会

让学生畅所欲言,说说收获与体会。

设计意图:

帮助同学理清知识脉络,强化重点。

8、布置分层作业

1、用科学计数法表示下列叙述中较大的数

2、应用题(选作)

3、提高题(选作)

设计意图:

内化知识,培养全体,注重个性发展。

数学七年级上教案(篇9)

一、打破传统模式,构建思维型课堂

初中阶段是学生情感意识建立的关键时期,而学生对于教师的良好感情则是课堂互动的基础。教师在教课过程中应该避免“填鸭式”的教学方式,因为这种教学方式很容易使学生增加对教师的依赖感,降低了他们的自主学习意识。在课堂上,教师应当加强与学生互动,适当地增加问题的提问。另外,教师在教学时应当结合实际,问题的设置要尽量贴近中学生的兴趣爱好,打破原来枯燥的说教方式。只有学生和教师之间建立起了良好的情感交流平台,学生才能对课堂感兴趣,才能在自主的学习过程中使自己的思维能力得到有效的锻炼。

二、在解题过程中锻炼思维能力

(一)加强审题能力

审题是解题的第一个步骤,而细看当今中学生的答题试卷便可发现,因为审题出错的题目比比皆是,所以提高审题能力是解题的关键步骤。教师在日常的教学中应当注重培养学生认真审题的意识,如可以让学生在读题时用笔标出关键条件,也可以让学生小声朗读题目。这都有助于学生对于题目的理解。

(二)设置思维型问题,给学生留下想象空间

无论是课堂例题的设置还是课后练习题的设置,都需要教师动脑筋,教师要用贴近学生生活的题目去吸引学生,并使之从中得到练习,加强对知识的巩固。思维发散的题目对于学生各项思维能力的培养都是很有益的。且这类题目一般形式新颖,学生对于它们的印象比较深刻,从而有利于学生对此类知识的吸收。例如,现有含盐15%的盐水200克,含盐40%的盐水150克,另有足够的盐和水,要配置成含盐20%的盐水300克。

1.如果要求是使用现有的盐水,但尽可能地少使用盐和水,应该怎样设计配置方案?

2.你还有其他的配置方案吗?这一类的题目就是一种思维发散的题目,第一问更多地给予了学生独立思考的空间,能使他们利用自己的逻辑思维能力展开想象,并综合运用所学知识最终求得合理的配置方案。而第二问则在第一题的基础上进行了拓展,学生可以相互展开讨论,培养自己的求异意识。这样,在整个解题的过程中,学生的思维能力都得到了有效的锻炼。

(三)培养对错题的反思意识

对于错题的整理与反思是纠正错误、加深印象和提高成绩最有效的办法。而中学生的自主学习能力较弱,对于这方面的内容做得还不够好。因此,教师应当注重学生对错题反思能力的培养,对于学生的学习习惯做硬性的要求,使学生在不断地总结与反思的.过程中去发散思维,得到新的启示。

学生可能经常会遇到这样的情况:如在做一道题时,反复思考都得不到答案,但是一经别人的提点或者一看答案解析,就立马想到了做法,实际上这还是因为学生对所学的知识掌握不牢固。因此,学生要培养错题反思、整理的意识,在了解标准答案的同时还要对自己不熟悉的知识进行着重的记忆,在造成解题障碍的环节上多下功夫。另外,学生在整理错题的过程中往往能收获新的解题方式,或者能对题目有更深的理解,这些都是思维锻炼的方式。

三、结语

在数学的教学过程中,教师一方面应当将知识准确地传达给学生;另一方面,也应当注重学生对于学习方法方式的培养和思维能力的锻炼。数学的学习是一个有趣灵活的过程。在数学课堂中,学生的思维得到锻炼的可能性将更大。因此,教师一定要抓住初中生这一时期的特点,构建思维型和情感型课堂,使学生在学习的同时得到能力的提升,最终达到新课程改革的目标。

数学七年级上教案(篇10)

教学目标

1.会用代入法解二元一次方程组;

2.体会解二元一次方程组的 “消元思想”和“化未知数为已知”的化归思想.

3.通过对方程中未知数特点的观察和分析明,确解二元一次方程组的主要思路 是 “消元思想”和“化二元为一元”的化归思想.

教学重难点

1.熟练的用代入法解二元一次方程组。

2.探索如何用代入法将“二元”转化为“一元”的消元过程。

教学过程

一、创设问题,引入新课

1.问题1:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜、负场数分别是多少?

解:设胜场数是x则负的场数是20-x 列方程为:2x+(20-x)=38.解得x=18,则负的场数为

20-x=20-18=2

2.问题2:在上述问题中,我们可以设出两个未知数,列出二元一次方程组,若设胜的场数是x,负的场数是y,则

x+y=20

2x+y=38

那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系呢?

设计意图:通过创设同一问题分别列出一元一次方程与二元一次方程组 ,引导学生对两者关联认识,为后续代入消元法解二元一次方程作铺垫。

二、学生探索,尝试解决

交流问题2:可以发现,二元一次方程组中第一个方程x+y=20可的到y=20-x,将第2个方程2x+y=38中y换为20-x,这个方程就化为一元一次方程2x+(20-x)=38.

归纳:

二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的思想方法,叫做消元思想.

归纳小结:上面的解法,是把二元一次方程组中一个方程中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的 解.这种方法叫做代入消元法,简称代入法.

设计意图:通过交流问题2,引导学生将心中所想显现出来,代入消元法的步骤和功效逐步显现出来。

三、典例交流,揭示规律

例1:用代入法解二元一次方程组x=y+3(1)

3x-8y=14(2)

解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,

所以这个方程组的解是 x=2,

y=-1

思考下列问题

(1)选择哪个方程代入另一个方程?目的是什么?

(2)为什么能代入?目的达到了吗?

(3)只求出 y=-1 ,方程组解完了吗? 把y=-1 代入哪个方程求x的值较简单?

(4)怎样知道你运算的结果是否正确?

反思:需检验,将 x=2,y=-1分别代入方程①②,看方程的左右两边是否相等,可以口算,也可以在 草稿纸上验算.【例2】用代入法解二元一次方程组x-y=3(1)

3x-8y=14(2)

思考:

(1)例1与例2有什么不同?(例1是用①直接代入②的,而例2的两个方程都不具备这样的条件.)

(2)如何变形?(把其中一个方程变形为例1中①的形式.)

(3)选择哪个方程变形较简单?(方程①中的x的系数为1,故可以将方程①变形得x=3+y.)

(学生口述,教师板书完成)

用代入消元法解二元一次方程组的步骤:

(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(变)

(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(代)

(3)解所得到的一元一次方程,求得一个未知数的值.(求)

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(解)

设计意图:进一步加强利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步骤提高学生的分析能力。

四、变式训练,深化提高

用代入法解下面方程组

设计意图:通过学生演练展示,帮助学生巩固用代入法解二元一次方程组的步骤。

五、师生共进,反思小结1、本节主要学习用代入法解二元一次方程组

2、主要的解题思想方法是消元思想。

3、代入消元法解二元一次方程组需要注意的问题.

(1)用代入法解二元一次方程组时,常选用系数比较简单的方程变形,这有利于正确、简捷地消元.

(2)由一个方程变形得到的只含有一个未知数的代数式必须代入到另一个方程中去,否则会出现一个恒等式.

(3)方程组解的表示方法,应该用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?

六、布置作业:

习题8.2 1,2题

七、板书设计

数学七年级上教案(篇11)

1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;

2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根

过程与方法目标:

1.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

2.通过拼大正方形的活动,体验解决问题的方法的多样性,发展形象思维。

情感与态度目标:

1.通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

2.通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。

教学难点:根据算术平方根的概念正确求出非负数的算术平方根。

同学们,10月15日,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,宇宙飞船离开地球进人正常轨道,它运行的速度在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、的大小满足 .其中,g是物理中的一个常量、R是地球的半径 。怎样求 、呢?即使给出g、R的对应值,利用我们已学过的`知识,也很难求出。这就要用到平方根的概念,也就是本章的主要学习内容.

这节课我们先学习有关算术平方根的概念.

使学生感受到“神五”的成功发射这一伟大壮举,竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习算术平方根的必要性。

问题一:

学校要举行美术作品比赛,小欧很高兴。他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?

很容易算出画布的边长等于5dm。

说说,你是怎样算出来的?

如果这块正方形画布的面积为单位1,那么它的边长是多少?如果面积分别为9、16 、36、呢?

上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是已知一个正数,求这个正数平方的问题.

通过幻灯片的演示,直观的把实际问题,抽象为数学问题,为学习算术平方根提供背景和素材,进而引入算术平方根的概念。

出示自学提纲:

3、自学例1,先试做后对照。

4、表示的意义是什么?它的值 是多少?用等式怎样表示?

5、144的算术平方根是多少?怎样用符号表示?

dg15.com编辑推荐

七年级数学教案合集


这是特别为您制作的“七年级数学教案”,相信您会对它感到满意。教案课件不仅关乎教学程序,也与教学标准有关,每位教师都需要用心考虑自己的教案课件。 教案是提高教学效果的重要手段。希望我们的网页能为您提供更多的支持和信息,请保持关注!

七年级数学教案 篇1

教学目标:

1.理解有理数的意义.

2.能把给出的有理数按要求分类.

3.了解0在有理数分类中的作用.

教学重点:会把所给的各数填入它所在的数集图里.

教学难点:掌握有理数的两种分类.

教与学互动设计:

(一)创设情境,导入新课

讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.

(二)合作交流,解读探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

议一议你能说说这些数的特点吗?

学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.

说明我们把所有的这些数统称为有理数.

试一试你能对以上各种类型的数作出一张分类表吗?

有理数

做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.

有理数

数的集合

把所有正数组成的集合,叫做正数集合.

试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.

(三)应用迁移,巩固提高

【例1】 把下列各数填入相应的集合内:

,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?

有理数有理数

(四)总结反思,拓展升华

提问:今天你获得了哪些知识?

由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.

下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?

(五)课堂跟踪反馈

夯实基础

1.把下列各数填入相应的大括号内:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整数集合{};

(2)分数集合{};

(3)负分数集合{ };

(4)非负数集合{ };

(5)有理数集合{ }.

2.下列说法中正确的是()

A.整数就是自然数

B. 0不是自然数

C.正数和负数统称为有理数

D. 0是整数,而不是正数

提升能力

3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?

七年级数学教案 篇2

七年级数学下册二元一次方程组说课稿

一、说教材分析

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、 难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=10

2x+y=16

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=10

2x+y=16

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

x xy

y

上表中哪对x、y的值还满足方程②。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第 五个环节。

(5)强化训练,巩固双基

课堂练习:

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

练习2:已知下列三对数值:

哪一对是下列方程组的解?

(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

① 通过本节课的学习,你学会了哪些知识;

(7)布置作业,提高升华

教科书第89页1、第90页第1题。

以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

五、评价与反思

本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

七年级数学教案 篇3

教学目标

1.了解的概念和的画法,掌握的三要素;

2.会用上的点表示有理数,会利用比较有理数的大小;

3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

教学建议

一、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握画法和用上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与上点的对应关系。的概念包含两个内容,一是的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用解决问题的方法,为今后充分利用“”这个工具打下基础.

二、知识结构

有了,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法。

三、教法建议

小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出的概念.是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是的根本依据。与它所在的位置无关,但为了教学上需要,一般水平放置的,规定从原点向右为正方向。要注意原点位置选择的任意性。

关于有理数与上的点的对应关系,应该明确的是有理数可以用上的点表示,但上的点与有理数并不存在一一对应的关系。根据几个有理数在上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。

四、的相关知识点

1.的概念

(1)规定了原点、正方向和单位长度的直线叫做.

这里包含两个内容:一是的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.

(2)能形象地表示数,所有的有理数都可用上的点表示,但上的点所表示的数并不都是有理数.

以是理解有理数概念与运算的重要工具.有了,数和形得到初步结合,数与表示数的图形(如)相结合的思想是学习数学的重要思想.另外,能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小.因此,应重视对的学习.

2.的画法

(1)画直线(一般画成水平的)、定原点,标出原点“O”.

(2)取原点向右方向为正方向,并标出箭头.

(3)选适当的长度作为单位长度,并标出…,-3,-2,-1,1,2,3…各点。具体如下图。

(4)标注数字时,负数的次序不能写错,如下图。

3.用比较有理数的大小

(1)在上表示的两数,右边的数总比左边的数大。

(2)由正、负数在上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数要防止出现“ ”的写法,正确应写成“ ”。

五、定义的理解

1.规定了原点、正方向和单位长度的直线叫做,如图1所示.

2.所有的有理数,都可以用上的点表示.例如:在上画出表示下列各数的点(如图2).

A点表示-4; B点表示-1.5;

O点表示0; C点表示3.5;

D点表示6.

从上面的例子不难看出,在上表示的两个数,右边的数总比左边的数大,又从正数和负数在上的位置,可以知道:

正数都大于0,负数都小于0,正数大于一切负数.

因为正数都大于0,反过来,大于0的数都是正数,所以,我们可以用 ,表示 是正数;反之,知道 是正数也可以表示为 。

同理, ,表示 是负数;反之 是负数也可以表示为 。

3.正常见几种错误

1)没有方向

2)没有原点

3)单位长度不统一

七年级数学教案 篇4

教学设计

教材简析:

《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

设计理念:

优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

教学目标:

1、通过对生活优化问题的合作探究,感悟合理、快捷解决问题的策略,提高学生解决问题的能力。

2、初步感受统筹思想在日常生活中的应用,尝试用统筹的方法来解决实际问题。

3、使学生在自主探索、合作交流中积累数学活动的经验,逐渐养成科学合理安排时间的`良好习惯。

教学重点、难点:

重 点:尝试合理安排时间的过程,体会合理安排时间的重要性。 难 点:掌握合理安排时间的方法。

教 法:启发法

学 法:练习法

教具准备:多媒体课件

教学过程:

一、联系生活,谈话导入。

同学们,你们干过家务活吗?谁能说说都做了那些家务?(学生发言)

周末小明也主动帮妈妈做家务,瞧,他做了些什么?(课件出示)

需要几分钟?

今天我们就来学习有关科学、合理安排时间方面的知识。(出示课题)

二、创设情境,探究新知。

1、沏茶问题

谁沏过茶?请举手。你平时沏茶的时候都需要做哪些事?你会先做什么?后做什么?估一估,做这些事情你需要多长时间? (指名说)

(2)看一看,淘气沏茶要做几件事情?(出示课件)从画面中你得到了哪些信息?

如果淘气一件一件地完成,需要多长时间?但小明是个爱动脑的好孩子。他想什么呢?(出示课件),怎样才能尽快地让客人喝上茶?”尽快”二字怎样理解?

聪明的小明就想跟大伙比比,看谁能设计出一个最佳的沏茶方案。出示课件。

小明也给咱们发来了一个温馨提示的信息:设计时应该考虑:1、先做什么?再做什么?哪些事又可以同时做?2、可用箭头“→”标出做事的先后顺序3、经你合理安排,计算出一共用了多少时间?节省了多少时间?下面,就以小组为单位,合作探究,与小明比比吧。板书示范。

③互相交流,比比谁的设计方案即合理又省时。

(3)学生展示、解说设计方案,学生集体观察。

方案A:洗水壶1分钟→接水1分钟→烧水8分钟→沏茶1分钟

找茶叶1分钟

洗茶杯2分钟

1+1+8+1=11(分钟)

方案B: 洗水壶1分钟→接水1分钟→烧水8分钟→找茶叶1分钟→洗茶杯2分钟→沏茶1分钟

1+1+8+1+2+1=14(分钟)

对这些方案,你认为哪种方案最合理,又省时间?为什么(同时)?学生说,师板书工序流程。出示课件,指导学生看流程图。

此时,小淘气的方案也出来了。(出示课件),你能看懂他的沏茶方案吗?

请同学们再想想,在哪个时间内还可以做些什么事?(学生说)能节省多长时间?多做了几件事?(揭示:同时做的事情越多就会越节省时间)

像小明写的这样图示,我们把它叫做“流程图”

2、出示情境图片:妈妈正在烙饼,每次只能烙两张饼,每面都要烙,每面3分钟。小女孩说:爸爸、妈妈和我每人一张,问:怎样才能尽快吃上饼?

先独立思考,再小组讨论交流,说说自己是怎么安排的?自己的方案一共需要多长时间烙完?

问:烙一张饼需要几分钟?烙两张呢?一共要烙3张饼,怎样烙花费的时间最少?

问:还可以怎样烙?哪种方法比较合理?

启发引导:在用第二种方法烙第3张饼的时候,本来一次可以烙两张饼的锅现在只烙了一张,这里可能就浪费了时间。想一想,会不会还有更好的方法呢?启发学生发现:如果锅里每次都烙两张饼,就不会浪费时间了,问:一张饼正反面分别要烙3分钟,怎样安排才能每次都是烙的两张饼呢?

学生动手用硬币、课本来代表饼进行实验。

问:如果要烙的是4张饼,5张饼??10张饼呢?

怎样按排最节省时间?小组讨论交流,说说自己的发现。

思考:(讨论)

三、运用知识,解决问题。

数学游戏:

1、两人轮流报数,每次只能报1或2,把两人报的所有数加起来,谁报数后和是10,谁就获胜。

想一想:如果让你先报数,为了确保获胜,你第一次应该报几?接下来应该怎么报?

2、两人轮流报数,必须报不大于5的自然数,把两人报的数依次加起来,谁报数后和是100,谁获胜。

如果让你先报数,为了获胜,你第一次报几?以后怎么报?

四、当堂训练

1、判断:这样安排时间合理吗?为什么?(课件出示)

A、小东边吃饭边看电视。

B、边打电话边骑车。

C、一边走路一边看书。

D、在马路上踢球。

五、畅谈收获,全课小结。

生活中还有哪些事情可以通过合理安排来提高效率?

总结全课:通过今天的学习,你有什么收获?

最后老师把伟大的文学家鲁迅的一句话送给大家,与大家共勉(课件):“时间,每天得到的都是24小时,可是一天的时间给勤勉的人带来智慧和力量,给懒散的人只能留下一片悔恨。”

六、作业

板书设计:

统筹安排时间

先后有序 同时完成 科学合理

最佳方案: 洗水壶 → 接水 → 烧水 → 沏茶

同↓ 洗茶杯

时找茶叶

课后反思:

七年级数学教案 篇5

1、内容结构分析

《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.

2、教学重点与难点:

教学重点:

⑴ 数学与我们的成长密切相关;

⑵ 数学伴随着人类的进步与发展,人类离不开数学;

⑶人人都能学会数学,激发学生学习数学的兴趣;

⑷将实际问题转化为数学问题;

⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.

教学难点:

⑴体会数学与我们的成长密切相关;

⑵学生剪图拼图的具体操作;

⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.

3、教学目标:

⑴知识与技能:

直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.

⑵过程与方法:

通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.

⑶情感、态度与价值观:

在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.

4、课时分配

几何图形 4课时

直线、射线、线段 3课时

角 2课时

课题学习 2课时

小结 3课时

单元测试与评讲 3课时

七年级数学教案 篇6

一、 教学目标

1、 在了解相反意义量的基础上,使学生了解正负数的概念和学习正负数的意义。

2、 使学生能正确判断一个数是正数还是负数,明确零既不是正数也不是负数。

3、 学会用正负数表示实际问题中具有相反意义的量。

二、 教学重点和难点

重点:正负数的概念

难点:负数的概念

三、 教具

投影片、实物投影仪

四、 教学内容

(一 )引入

师:我们知道,为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它叫做什么数?

生:自然数

师:为了表示“没有”,又引入了一个什么数?

生:自然数0

师:当测量和计算的结果不是整数时,又引进了什么数?

生:分数(小数)

师:可见数的概念是随着生产和生活的需要而不断发展的。请同学们想一想,在现实生活中是否还存在着别类型的数呢?如吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8848.13米,我市某天最高气温是零上8摄氏度。

请学生用数表示这些量,遭遇表示困难。

师:为了能表示这些量,我们需要引入一种新数这就是本节课所要学习的内容。[板书:1、1正数与负数]

(二)新课教学

1、 相反意义的量

师:在现实生活中,我们常常遇到一些具有相反意义的.量,比如:(投影片显示)

(1) 汽车向东行驶2.5千米和向西行驶1.5千米;

(2) 气温从零上6摄氏度下降到零下6摄氏度;

(3) 风筝上升10米或下降5米。

引导学生明确具有相反意义的量的特征:(1)有两个量 (2)有相反的意义

请学生举出一些相反意义的量的实例。

教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等。

2、 正数与负数

师:用小学里学过的数能表示这些具有相反意义的量吗?如何来表示具有相反意义的量呢?

由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示。

师:例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题。

生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米)。

师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数。正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?

生:(讨论后得出)不能。

师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

(三)、练习

1、 学生完成课本第4页练习1,2,3

2、 补充练习

(1)在-2,+2.5,0, ,-0.35,11中,正数是 ,负数是 ;

(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?

(3)欧洲人以地面一层记为0,那么1楼、2楼、3楼……就表示为0,1,2……那么地下第二层表示为 。

(四)小结

1、 引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示。

2、 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定。

3、 要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与小学里学过的数有很大的区别。

(五)作业

见作业1.1节作业。

七年级数学上学期教学计划


七年级数学是初中数学的重要组成部分,七年级上学期的教学计划是怎样的?下面是小编收集整理的七年级数学上学期教学计划,欢迎阅读。

七年级数学上学期教学计划篇一

一、指导思想

本学期我将积极参加学校组织的政治学习,认真学习马列主义、毛泽东思想及邓小平理论,江泽民三个代表重要思想和科学发展观,坚持党的基本路线,拥护中国共产党的领导,贯彻党的教育方针、政策,与党中央保持高度的一致,使自己真正成为时代前进的促进派。认真学习《教师法》、《教育法》、《义务教育法》、《教师职业道德规范》及《未成年人保护法》等法律法规,使自己对各项法律法规有更高的认识,做到以法执教。忠诚于党的教育事业,立足教坛,无私奉献,全心全意地搞好教学工作,做一名合格的人民教师。

二、学生情况分析

本学期我担任七年级3班数学教学,该班共有学生38人。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,七年级学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应七年级教学的新要求,要重视对学生进行记法指导。

三、教学目标

(一)知识与技能

1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

(二)过程与方法

1.采用思考、类比、探究、归纳、得出结论的方法进行教学;

2.发挥学生的主体作用,作好探究性活动;

3.密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力.

(三)情感态度与价值观

1.理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。

2.逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。

四、教材章节分析

第一章《有理数》

1.本章的主要内容:

对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。

重点:有理数加、减、乘、除、乘方运算

难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。

2.本章的地位及作用

本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建数学大厦的地基。

第二章《整式的加减》

1.本章的主要内容

列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。

重点:去括号,合并同类项。

难点:对单项式系数,次数,多项式次数的理解与应用。

2.本章的地位及作用

整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。

第三章《一元一次方程》

1.本章的主要内容

列方程,一元一次方程的概念及解法,列一元一次方程解应用题。

重点:列方程,一元一次方程的解法,

难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。

2.本章的地位及作用

一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。

第四章《图形认识初步》

1.本章的主要内容、地位及作用

本章主要介绍了多姿多彩的图形(立体图形、平面图?),以及最基本的图形点、线、角等,并在自主探究的过程中,结合丰富的实例,探索两点确定一条直线和两点间线段最短的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。

2.教学重点与难点

教学重点:(1)角的比较与度量;(2)余角、补角的概念和性质;(3)直线、射线、线段和角的概念和性质

教学难点:(1)用几何语言正确表达概念和性质;(2)空间观念的建立。

五、具体教学策略

1.认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,让学生学会认真学习。

2.兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

3.引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写复习提纲,使知识来源于学生的构造。

4.引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,培养学生的发散思维,让学生处于一种思如泉涌的状态。

5.运用读新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念,将带来不同的教育效果。

6.培养学生良好的学习习惯,有助于学生进步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

7.进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

8.站在系统的高度,使知识构筑在一个系统,上升到哲学的高度,八方联系,浑然一体,使学生学得轻松,记得牢固。

9.开展课题学习,把学生带入研究的学习中,拓展学生的知识面。

六、进度安排

教学内容课时

1.1正数和负数1课时

1.2有理数4课时

1.3有理数的加减法4课时

1.4有理数的乘除法5课时

1.5有理数的乘方3课时

本章复习2课时

2.1整式2课时

2.2整式的加减3课时

本章复习2课时

3.1从算式到方程4课时

3.2从古老的代数说起一元一次方程的讨论(1)4课时

3.3从买布问题说起一元一次方程的讨论(2)4课时

3.4再探实际问题和一元一次方程4课时

本章复习2课时

4.1多姿多彩的图形4课时

4.2直线、射线、线段2课时

4.3角的度量3课时

4.4角的比较和运算3课时

本章复习2课时

七年级数学上学期教学计划篇二

一、各章课时安排

全书内容(含各章复习)与课时安排

第1章走进数学世界--------------4课时

第2章有理数-------------------23课时

第3章整式的加减---------------14课时

第4章图形的初步认识-----------17课时

第5章数据的收集与表示----------8课时

课题学习-------------------------4课时

二、教学目标

第一单元走进数学世界

1.使学生初步认识到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识.

2.使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程.

3.使学生对数学产生一定的兴趣,初步获得学好数学的自信心.

4.使学生初步学会与他人合作,养成独立思考与合作交流的习惯.

5.使学生在数学活动中初步获得对数学良好的感性认识,初步体验到什么是做数学.

第二单元有理数

1.使学生体会具有相反意义的量,并能用有理数表示.

2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义.

3.会求有理数的相反数和绝对值(绝对值符号内不含字母).

4.会比较有理数的大小.

5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算.

6.会用计算器进行有理数的简单运算.

7.理解有理数的运算律,并能用运算律简化运算.

8.能运用有理数的运算解决简单的问题.

9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断.

第三单元整式的加减

1.在现实情境中进一步理解用字母表示数的意义,掌握用字母表示数,让学生在探索现实世界数量关系的过程中,建立符号意识.

2.了解代数式的概念,会列出代数式表示简单的数量关系,掌握代数式的书写注意事项.

3.通过用字母表示数、列代数式和求代数式的值,让学生体会到数学中抽象概括的思维方法和事物的特殊与一般性可以相互转化的辩证关系,培养学生的数学概括能力、数学表达能力和初步的辩证唯物主义思想.

4.了解代数式的值的概念,会求代数式的值.

5.了解单项式、多项式、整式的概念,弄清它们与代数式之间的联系和区别.

6.掌握整式、单项式及其系数与次数、多项式的次数、项与项数的概念,明确它们之间的关系,并会把一个多项式按某个字母升幂排列或降幂排列.

下一页更多精彩七年级数学上学期教学计划

7.理解同类项的概念,会判断同类项,并能熟练地合并同类项.

8.掌握去括号、添括号的法则,能准确地进行去括号与添括号.

9.能熟练地进行整式的加减运算.

10.整式的加减运算建立在数的运算基础上,数的运算律在整式的加减中完全适用.通过将数的运算推广到整式的运算,在整式的运算中又不断运用数的运算,使学生感受到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想.

第四单元图形的初步认识

1.直观认识立体图形、视图和展开图,使学生了解研究立体图形的方法,同时也为平面图形的引入做准备.

2.通过观察、操作,直观认识平面图形,使学生了解图形的分割和组合,在此基础上了解点和线,并探索点和线的性质.

3.正确理解两点间距离的含义.

4.逐步掌握点、线段、直线、射线的表示方法.

5.结合图形认识线段间的数量关系,学会比较线段的大小,理解线段的和差也是线段这一事实.

6.理解角的两种定义,尤其是旋转定义.使学生明确角的本质特征.

7.结合图形认识角与角之间的数量关系,学会比较角的大小,理解角的和差,理解角平分线的概念.

8.学会用圆规和直尺准确地画出一条线段、一个角,使其分别等于已知线段与已知角.

9.认识互为余角和补角的概念,认识对顶角的概念。理解互为余角和互为补角主要反映了角的数量关系,而对顶角主要反映角的一种位置关系.

10.理解垂线的概念,会用三角尺、量角器过一点画一条直线的垂线.理解点到直线的距离的概念,并会度量点到直线的距离.

11.了解同位角、内错角和同旁内角的概念.

12.理解平行线的概念,会用三角尺和直尺过已知直线外一点画这条已知直线的平行线.

13.认识平行线的特征,会识别实际生活与数学图形中的平行线.会根据图形中的已知条件,通过简单说理,得出欲求结果

第五单元数据的收集与表示

1.让学生通过一些实例,体会数据在发现、决策和交流中的作用,了解通过收集数据解决问题的过程,逐步养成用数据说理的新习惯.

2.理解频数、频率的概念.

3.让学生亲自参与收集数据,通过简单的分析、提炼和加工归纳出比较明显的结果,品尝发现带来的快乐.

4.统计表的设计、条形统计图和折线统计图的制作是小学已经学过的内容,本册要求学生会画扇形统计图的草图,会从统计表和统计图中得出直接的信息和经简单加工的信息.

5.了解一种不够规范的统计图(纵轴不从0开始的统计图)容易误导读者.

6.通过解决简单的问题,继续让学生经历收集、整理和分析、提炼数据的全过程,培养学生一定的获取信息的能力.

三、教学建议

第一单元走进数学世界

1.无新知识,主要是使学生在自主探索和合作交流中获得对数学良好的感性认识,初步体验到什么是做数学.

2.只是提供一个教学思路,教师应结合学生的具体情况,补充适当的素材,并不限于书本上的每道题会做.

第二单元有理数

第二单元有理数

1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算.教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识.

2.本章教材注意控制对运算的要求,尤其是删去了繁难的运算.本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。同时引进了计算器来完成一些有理数的运算.教学中要注意正确地把握.

第三单元整式的加减

1.充分体现由特殊到一般,又由一般到特殊的思维过程,让学生经历探索数量关系和变化规律的过程,给学生渗透辩证唯物主义思想.

2.知识呈现过程尽量与学生已有生活经验密切联系,发展学生应用数学的意识和能力.

3.充分暴露知识的发生、发展过程,重视基础知识的学习.

4.注意发挥例习题的教育功能.

(1)注意与其它学科的横向联系和学科间的纵向联系.

(2)注意适当插入一些开放题,培养学生发散思维.

(3)注意利用习题扩充学生的知识面,并贴近学生生活.

(4)注意利用习题给学生渗透德育教育和美的教育.

第四单元图形的初步认识

1.本章的特点是强调直观和操作,在观察中学会分析、在操作中体验变换.教材的编排以生活中的物体--立体图形--面--点线为序,淡化概念识记,强调图形的区分.教材给学生提供了大量的丰富的空间、平面图形,让学生通过直观感知、操作确认等实践活动,丰富对图形的认识和感受.教材注意了变化思想和数学说理的渗透,让学生初步体验一些变换思想、初步学会数学说理.

2.第1节到第4节是图形的认识,务必抓住直观感知、操作确认两个认识阶段,淡化概念,注意渗透分类的数学思想方法.

3.第5节到第6节是对一些最基本的图形元素的认识。结合图形认识线段、射线、直线、角的概念。线段、角的比较与运算的度量法以及叠合法,特别要注意后者.认识线、角的一些位置关系与度量关系.

4.第7节与第8节是进一步认识线、角的关系。主要还是通过直观感知、操作确认进行,让学生主动参与,初步学会数学说理,注意渗透变换的数学思想方法.

5.本章中涉及的概念,一般都结合具体图形,给出描述性的说法,让学生根据图形理解、认识,学会初步的运用.

6.淡化概念的纯文字表述,只要求会识别.如:棱(圆)柱、棱(圆)锥;角;对顶角;同位角、内错角、同旁内角等.

7.视图与展开图仅限于简单的常见的立体图形

8.注意图形与几何语言的转换,重视规范几何语言的训练.如:直线AB、CD相交于点O等.

9.注意渗透变换与说理.

七年级数学上学期教学计划篇三

一、学情分析:

本人执教的七(3)、(4)两个班共85人,根据分班考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多,而且学习欠缺勤奋,学习的自觉性不高。七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。学生大多存在学习粗心,作业马虎,对数学学习缺乏兴趣和信心的整体弱点,学习习惯差。

在知识结构上:

学生在小学已学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化、理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;

在数学的思维上:

学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题目,无疑是对学生终身有用的;另一方面关注一题多解,多题一解,从不同的角度看问题,培养学生数学思维的活跃性和敏感性。

在学习习惯上:

部分小学的不良习惯要得到纠正,良好的习惯要得到巩固,如独立思考,认真进行总结,及时改正作业等,都应得到强化。

一般来说,大部分学生对数学是感兴趣的,但仍有部分学生对数学信心不足,因此开学初要给学生树信心;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生适应初中的学习生活。

根据上述情况本期的工作重点将扭转学生的学习态度,培养学生的创新意识,激发学生学习数学的热情,抓优扶差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。

二、教材情况分析:

(一)本学期教学目标

本期教材知识内容为基本的几何图形、有理数、有理数的运算、数据的收集与简单统计图、代数式与函数的初步认识、整式的加减、数值估算、一元一次方程。

1、知识与技能目标:

学生通过经历从具体情境中抽象出符号的过程,认识有理数和代数式,掌握必要的有理数和代数式的运算(包括估算)技能,能运用有理数,代数式探索具体问题中的数量关系和变化规律,并能运用有理数的代数式来进行描述;了解开方和乘方是互为逆运算,知道实数和数轴上的点一一对应;会解一元一次方程,能利用一元一次方程解决简单的实际问题;学生在经历物体和图形的初步认识过程中,掌握基本的识图与作图技能,认识最基本的图形点和线,进而认识角、相交线和平行线,掌握与此相关的基本推理技能;学生通过经历收集、整理、描述、分析数据,做出判断并进行交流活动的全过程,体会数据的作用,掌握基本的数据处理技能,形成对统计与概率的初步认识。

2、过程与方法目标:

①学会能对具体情境中较大的数字信息做出合理的解释和推断,能用有理数、代数式刻划事物间的相互关系。②学生通过在探索图形(点、线、角、相交线、平行线)的性质、图形的变换以及平面图形与窨几何体的相互转换(三视图、展开图)等到活动过程中,初步建立空间观念,发展几何直觉;能在说理的推证过程中,体会证明的必要性,发展初步的演绎推理能力。③学生能在数据的收集与表示中,学会收集、选择、处理数学信息,做出合理的推断或大胆的猜测,并能用实例进行检验,从而增加可信度或否定。④学会能结合生活实际的具体情境发现并提出数学问题。⑤学会从不同的角度解决问题的方法,有效地解决问题,尝试对比评价不同方法之间的差异,并学会对解决问题过程的反思,从而获得解决问题的经验。⑥学会在解决问题的过程中与他人合作学习,养成独立思考与合作交流的习惯。

3、情感态度与价值观目标:

①学生通过初步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,形成用数学的意识。②学会敢于面对数学活动中的困难,勇于运用所学数学知识克服困难并解决问题,获得成功的体验,从而树立学好数学的自信心。③学生通过学习,体验到数学中的有理数、代数式和几何图形是有效地描述现实世界的重要手段,认识到这些数学知识是解决实际问题和进行交流的重要工具从而了解数学对促进社会进步和发展人类理性精神的作用。④初步认识到数学活动是一个充满观察、实验、归纳、类比、推断可以获得数学猜想的探索过程,体验到数学活动充满着创造性,感受证明的必要性、证明过程的严谨性和结论的确定性。⑤学会在独立思考的基础上,积极参与学习讨论,敢于发表自己的观点,并能虚心听取、尊重与理解他人的见解,从而学会在交流中提高自己,形成良好的思维品质。⑥通过阅读学习,了解我国数学家在数学上的杰出贡献,从而增强民族的自豪感,增强爱国主义。

上述三维目标是一个密切联系的有机整体,它们是相互联系的和相互作用的。过程与方法目标的实现,情感与态度目标的实现,离不开知识与技能的学习,否则它们的实现将是无源之水、无本之木;同时,知识与技能的学习必须以有利于过程与方法目标、情感与态度目标的实现为前提。

(二)教学重点与难点

1、有理数的概念、分类及运算。

2、代数式的概念及分类。

3、对函数的初步理解与认识。

4、整式的加减运算。

5、一元一次方程的概念及求解过程。

三、教科研课题:

课题名称:怎样学好数学?

研究步骤:1、研讨学习数学的重要性,让学生了解数学就在我们身边。

2、老师认真分析学生的具体情况,研究怎样教的问题。

3、探讨让学生怎样学习数学及学习的方法。

4、加强师生之间的交流。

具体措施:首先是全体数学老师共同研究,然后老师与学生相互交流,同时学生与学生之间也展开讨论具体的学习方法。

四、教学进度表

周次教学内容课时数量

12周基本的几何图形7

23周有理数5

35周有理数的运算11

56周数据的收集与简单统计图6

68代数式与函数的初步认识9

810整式的加减6

1011数值估算5

1214一元一次方程13

15复习

七年级上数学课件


编者特意整理了关于“七年级上数学课件”的一些资讯,接下来详细进行介绍。制作教案课件是老师的一项重要工作,所以每天老师都会按照要求准时准备好教案课件。而制定教案需要深入了解学科的特点和教学规律。希望您能继续阅读下文,获取更多相关资料!

七年级上数学课件 篇1

教学内容

义务教育课程标准实验教科书人教版《数学》 二年级上册第三单元第38-39页例1-例2.

设计思路

1.指导思想

《角的初步认识》这节课是在学生已初步认识长方形、三角形、正方形的基础上进行教学的。它们与实际生活有密切的联系,我们周围很多物体上有角。因此,让学生通过实践操作活动,在初步感知角的基础上进一步认识角、了解角的特征。

2.设计理念

通过学习,使学生初步认识角,知道角的各部分名称,会用不同的方法画角和比较角的大小。通过感知角 —找角—摸角—画角—分辨角—做角、玩角—创造角等操作活动,给学生提供“做数学”的机会,让学生在动手操作、合作交流中体验成功的喜悦。

3.教材分析

这节课是人教版《数学》 二年级上册第三单元第一课时内容,教材从引导学生观察生活中的角及实物开始逐步抽象出所学图形的角,再通过实践操作活动加深对角的认识,使学生建立角的表象,为下节课认识直角做好准备。同时,这部分知识发展学生的空间观念,想象力和操作能力。

4.学情分析

在初步感知角的基础上,通过实践操作,获取直接经验,为形成角、直角的空间观念奠定基础。

教学目标

知识与技能:结合生活情境,使学生初步认识角,能够识记和理解各部分名称,会用不同的方法画角和比较角的大小。

过程与方法:通过观察,操作等数学活动,培养学生的观察能力、实践能力、抽象能力,建立初步的空间观念,发展学生的形象思维。

情感、态度、价值观:通过实践活动,使学生获得成功的体验, 建立自信心,感悟生活与数学的密切联系,激发学习数学的兴趣。

教法与学法

教法:尝试指导法。

学法:动手实践,自主探究。

教学重点、难点

重点:根据角的特征辩认角。

难点:角的大小与边的长短没有关系。

教具准备

课件、三角板、图钉、硬纸条、剪刀、扇子等。

学具准备

三角板、硬纸条、图钉、圆形纸片、长方形纸、剪刀。

教学过程

一、创设情境,激趣导入

师:同学们猜猜我们这节课将要学什么?

生1:可能与角有关。

师:你是怎么知道的?

生1:因为老师让我们带了三角板,我想可能与角有关吧。

……

师:在生活当中你看到过或听说过哪些角吗?

生2:硬币上有角。

生3:红领巾上有角。

生4:三角板上有角。

……

师:硬币上的角和我们今天学的角可不一样,我们今天要研究的角是数学意义的角,数学中的角究竟是怎样的呢?我们一起到校园里去看看吧。

【设计意图:从学生的生活经验出发,创设问题情境,让学生感受到数学就在我们的身边,激发学生求知的欲望。】

二、初步感知,探究新知

(课件出示主题图)新的一天开始了,校园里早早就热闹起来,操场上更是生机勃勃,你们看到了什么?这里面有角吗?先说给你的同桌听一听,然后说给同学们听。

生1:老师拿的三角板。 生2:老爷爷修剪花木用的剪刀。

生3:小朋友做操时伸的直直的双臂。

……

师:真是一群善于观察的好孩子。是啊,角在我们的生活当中无处不在,这节课我们就一起来认识这位“新朋友”。(板书:角的初步认识)

三、自主探索、感悟新知

1.联系实际,感知角

师:角特别喜欢玩捉迷藏的游戏,老师带来了几幅图,你们能找出来吗?课件出示钟表、剪刀、饮料吸管、窗户等图片,指几名学生找角,根据学生的回答屏幕上的红色线闪烁显出角。

师:同学们的眼睛真亮啊,把藏在物体里的角都找出来了。

2.找生活中的角

师:其实我们的身边还有很多角,仔细观察你就会发现周围哪些物体表面也藏有角?把你找到的角指给同桌看一看.(生活动)

师 :谁愿意把你找到的角与大家一起分享?

生:黑板上、桌子上、数学书上、窗户上……

师:你们真是生活中的有心人!角在我们的生活中真是太广泛了,只要你们用数学的眼光去观察,就能发现更多的角。

【设计意图:让学生从生活中发现角、认识角并从实例中抽象出角的图形,建立角的表象,体会到生活中处处有数学的思想,获得用数学的体验。】

3.摸角(认识数学中的角)

师:请同学们拿出三角板,先摸一摸再看一看角是怎样的?

生1:角的前面尖尖的,旁边直直的。

生2:它是由两条直线组成。

师:嗯,观察得很仔细,现在请同学们用角尖尖的地方在手心扎一下,看看手心上留下了什么?

生:一个小圆点。

师:它是角的一个组成部分,数学家给它起了个名字叫“顶点”,课件出示小圆点,这就是一个角了吗?

生:不是,还有两条直直的线。(演示)

师:这两条直直的线,数学家也给它起了个名字叫“边”。这就是数学王国中的“角”,让我们给刚才这些实物脱掉美丽的外衣,就变成这样。(课件隐去实物图出现几个大小不同的角)请仔细观察,这些角有什么相同的地方?

生:他们都有一个顶点两条边。

师:也就是说角是由一个顶点两条边组成的。

4.画角

师:刚才我们已经认识了角的特征,你们会画角吗?课件演示画角的过程。

师:请拿出三角板,按刚才的方法画一个自己喜欢的角。

指几名生上黑板画,画好后让生评价。

5.分辨角

师:现在请同学们闭上眼睛想一想角是怎样的?帮我辩一辩哪些图形才是角家族的朋友?

下面图哪些是角?哪些不是角? 为什么?

《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计

《角的初步认识》教学设计《角的初步认识》教学设计

生辨认并说理由

师:了不起的小法官!刚才同学们已经会画角了也会辨认角了,你们会做角吗?

6.做角玩角

拿出准备的硬纸条和图钉开始做角吧,做好以后再玩一玩看谁的角大谁的角小?(生活动并玩角)

师:说说看,你们发现了什么?

生:两根塑料带张开一些角就越大,合拢一些角就越小。

师:怎样用数学语言说呢?

根据学生的回答归纳:角的两边拉开的大角就大,角的两边拉开的小角就小。

师:你们真会发现。老师也带来了两样东西请看看吧,出示扇子、剪刀演示。

课件出示:角的大小与什么有关?

小结:角的两边张开的大角就大,角的两边张开的小角就小。

7.猜角

《角的初步认识》教学设计师:看看谁能猜出这两个角的大小?

《角的初步认识》教学设计

师:究竟谁大?生猜后课件动画演示两个角的顶点和边重合,发现角一样大。

小结:角的大小与边的长短没有关系,而与角的张口大小有关。

8.创造角

师:刚才同学们对角已经有了很深的了解,那么你们会创造角 吗?请拿出准备的圆形纸片,看看用哪些方法可以创造出角?

(生活动,有折、有剪、有撕、有画……)全班欣赏评价。

【设计意图:练习融趣味性、创造性于一体。通过实践活动,使学生亲历探究的过程,激发了学生的'想象力,培养他们的动手操作能力和思维能力。】

四、巩固拓展

师:看同学们表现得这么出色,老师想考考你们,敢接受挑战吗?

1.下面的图形个有几个角?

《角的初步认识》教学设计《角的初步认识》教学设计《角的初步认识》教学设计

《角的初步认识》教学设计《角的初步认识》教学设计

2.摆一摆两根小棒能摆出几个角?三根呢?你们能用自己的身体表示出一个角来吗?

3.一张长方形的纸有几个角?如果剪掉一个角还有几个角? 【设计意图:通过层次深度的练习设计,既培养学生运用知识解决实际问题的能力,又发展了学生的思维。】

五、升华主题,欣赏美

师:同学们角不仅在数学中被广泛应用,古今中外许多建筑都利用了角的特性,下面就让我们一起来感受他们的神奇魅力吧。

(伴随悠扬的音乐欣赏古建筑)

【设计意图:欣赏古代建筑,提高了学生的审美能力,感受到几何图形的美,增强热爱数学、学好数学的信心。】

六、总结全课

1.这节课你对自己的表现满意吗?对老师满意吗?

2.通过这节课的学习你有哪些收获? 生畅所欲言

师:这节课同学们不仅认识了角的形状,知道了角有一个顶点, 两条边,还学会了画角。今后,我们将会学习更多关于角的知识,在角的王国里探究更多的奥秘。回家以后,找一找家中的角说给你的爸爸妈妈听,好吗?

【设计意图:让学生自我评价和对老师的评价,凸显个性,展现自我,增强自信,培养学生学习数学的能力。】

教学反思

反思这节课,我能努力实践着新课程的理念。这节课的尝试主要体现以下几方面的特点:

⑴关注生活经验,重视实践操作,让学生经历角的含义的形成过程,激发学生学习的兴趣。本节课先让学生说说在生活当中看到过或听说过哪些角,充分调动学生的生活经验,然后在找角—摸角—画角—分辨角等活动中建立了角的表象,丰富了对角的认识,真正体现了“让学生亲身经历,将实际问题抽象成数学模型的过程”这一基本理念。使他们在“做数学”的过程中不仅获取了知识,培养了动手操作能力,还发展了学生的思维,使他们在亲历的过程中感受到学习的乐趣。

⑵充分发挥学生的主体作用,及时评价学生的学习成果。

在教学过程中,教师向他们提供充分的从事数学活动和交流的机会,帮助他们在自主探索的过程中真正理解和掌握角的基本特征,突出学生的主体地位。及时评价学生让他们一起体验成功的喜悦,使他们真正成为学习的主人。

⑶利用学具和多媒体等教学手段,调动学生的多种感官,强调数学学习的实践性、探究性和趣味性,注重了学生的情感体验和个性发展。提高了学生的审美能力,感受到几何图形的美,最大限度发挥学生积极参与学习的过程,从而使课堂真正焕发生命活力。

不足:

⑴时间把握不够准确,预设的活动没有按时完成。

⑵教师的教学语言不够精练。

七年级上数学课件 篇2

(1)本节的重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.两直线垂直的定义中虽然强调“有一个角是直角”,但实际上由对顶角和邻补角的性质,可以得到其他三个角也都是直角,因此不指定哪一个角是直角,实际上无论哪一个角是直角,都可以判定两直线垂直.反过来,已知两直线垂直,那么它们的四个交角中无论哪一个角都是直角.对于点到直线的距离,一定要给学生强调距离是垂线段的长度,是一个数量,而不能误认为是垂线段本身.

(2)本节的难点是空间直线与平面、平面与平面的垂直关系.因为初一学生的空间想象能力比较差,想象不出什么情况下直线与平面、平面与平面垂直.教科书是学生在对长方体已有认识的基础上,通过进一步的观察分析,得出结论,对于这些结论,只要求学生有感性认识,不要求学生掌握,所以老师不要深挖.

(1)本节仍用上节用过的相交线模型作演示(也可用我们提供的课件),在让学生观察模型时,不要只让学生看热闹,而要让他们带着问题去看,可以提出如下两个问题:(1)转动木条b时,它和不动木条a互相垂直的位置有几个?(认识垂线的唯一性);(2)当a、b相交有一个角是直角时,其他三个角也都是直角吗?然后找学生回答,以此来增加学生对两直线垂直的感性认识.

(2)对于空间里直线与平面、平面与平面垂直的知识是要求学生了解的内容,不是重点但是难点,因为此时学生的`空间想象力差,不容易想象它们垂直的情形,为了突破这个难点,

我们做了一个课件,这个课件把直线与平面、平面与平面垂直的情况,更直观的展现了学生,帮助学生对此知识的理解.

1.使学生掌握垂线的概念。

2.会用三角尺或量角器过一点画一条直线的垂线。

3.使学生理解并掌握垂线的第一个性质。

1.通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。

2.通过垂线的画法,进一步培养学生的实际动手操作能力。

使学生初步树立辩证唯物主义观点。

(四)通过垂线,使学生进一步体会到几何图形的对称美。

通过创设情境,引导学生主动发现性质,并运用练习加以巩固.

投影仪、三角尺、量角器、自制胶片.

1.通过创设情境,复习基础知识,引入课题.

2.通过教师引导提问,学生思考、互相叙述和纠正,教师点拨,练习巩固新课.

通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力.

以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为巩固检查手段,强化教学内容.

提出问题:如右图,(1)∠AOC的对顶角是哪个角?这两个角的关系怎样?

七年级上数学课件 篇3

今天我将要为大家说的课题是:有理数的加减法第一课时

首先,我对本节教材进行一些分析

㈠教材结构与内容简析

本节内容在全书及章节的地位:略

㈡教学目标:

1.知识与技能:

使学生掌握有理数加法法则,并能运用法则进行计算;

2.过程与方法:

在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力

3.情感态度与价值观

通过师生合作,联系实际,激发学生学好数学的热情,感受加法无处不在,无处不有。

㈢教学重点:有理数加法法则。

㈣教学难点:异号两数相加的法则。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

㈤教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,

我在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点,应着重采用活动探究式的教学方法

㈥学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:记忆加法法则;

2、实践:足球赛记分动笔动手;

3、能力:加法运算能力

㈦教学准备:课件或章前足球赛图

㈧教学设计:

一、创设情景,孕育新知

活动一:观摩足球赛:

足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:

(1)上半场赢了3球,下半场赢了2球,那(3)(2)=5.①

(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)(-1)=-3.②现在,请同学们说出其他可能的情形.

答:上半场赢3球,下半场输2球,全场赢球,也就是

(3)(-2)=1;③

上半场输了3球,下半场赢了2球,全场输了1球,也就是

(-3)(2)=-1;④

上半场赢了3球下半场不输不赢,全场仍赢3球,也就是

(3)0=3;⑤

上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)0=-2;

上半场打平,下半场也打平,全场仍是平局,也就是

00=0.⑥

二、自主探究,获取新知

活动二:现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?

这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

活动三:

应用举例变式练习

例1计算下列算式的结果,并说明理由:

(1)(4)(7);(2)(-4)(-7);

(3)(4)(-7);(4)(9)(-4);

(5)(4)(-4);(6)(9)(-2);

(7)(-9)(2);(8)(-9)0;

(9)0(2);(10)00.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)(-9)(两个加数同号,用加法法则的第2条计算)

=-(39)(和取负号,把绝对值相加)

=-12.

活动四:教学22页例1、例2(详见课本)

三、巩固练习,运用新知

活动五:练习:23页1.2

四、归纳小结,升华新知

同学们分组讨论,学习了哪些知识?并交流。

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

五、回归实践,再用新知

作业:31页:课外作业选做

针对学生素质的差异进行分层训练,既使学生掌握基本知识,又能够使学生获得基本技能!

七年级上数学课件 篇4

(一)让学生更理解数学。如前文所说数学教学的目的是提高学生逻辑思维能力和思考能力。变式指在数学本质基础上通过其他方式和方法呈现数学内容。如一种数学题目在不同试卷上可以用不同方法表示,也可以通过不同方法解决。虽然解决一道数学题目的方法很多,但是题目考验学生能力的内容是一致的,即在本质上解答问题的思路是一致的,并且使用的数学公式是不变的。通过变式教学方法可以让同学更了解数学题目,即不停留于一种题型,让学生在了解公式的基础上灵活解决同类型题目。有句话一直牢记在我心中:要活学并活用。变式教学就是教会我们活用的技巧,让我们更好地解决问题,并在解决问题的同时提高自身能力。

(二)提高答题效率,减轻学生压力。目前学生压力大,课后作业占据学生大部分放松时间。学生在课后作业上面花费的时间越来越多,是因为课后作业不断增多还是因为学生不会做题而无法快速完成?这个问题的答案从优秀学生和后进学生身上可以反映出。学习好的学生几乎在学校就可以基本完成老师布置的作业,回家后还利用休闲时间对所学内容进行复习或者做自己买的练习,甚至可以挤出时间看课外书。但是成绩差的学生可能回家做了几个小时的作业还没有完成老师布置的作业,更别说做自己购买的练习或者看书复习了。这是什么原因?因为成绩不好的学生对学习的知识还不是很了解,并且不会灵活运用,他们只会做上课老师所讲的题目,如果让他们解与老师所讲的题目做法相同但是条件不一样的题目可能仍无法解决或者需要花费很久时间。这种情况下最好的解决办法就是运用变式教学,在学生了解教学内容基本概念之后给学生不断练习不同的题型,只有不断解题之后学生才可以牢记所学知识,并且能够活用,而且日后学习中还要不断练习和巩固。但是在变式教学运用上需要注意以下几点:第一,根据学生正常学习新内容的能力给学生安排合适练习;第二,加强学生对专业性概念的理解,只有在学生理解数学概念的基础上才可能运用概念,如果对概念都无法理解几乎无法解决那一类题目;第三,在学生学习新知识时,教育者可以把该知识与学生之前所学的知识相联系,让学生通过对旧知识的巩固学习新知识,容易理解和掌握现在要学习的知识。变式教学是保持数学题目中原有的实质,对题目进行改变并通过不同方式展现出的一系列问题变化,通过这样教学可以提高学生对知识的掌握程度,轻松地运用所学知识举一反三,快速解答问题,在很大程度上提高学生解题效率,并且减轻学生的学习压力。

变式教学通过不改变题目基本知识点而改变题目题型为学生学习提供开放性的条件,让学生通过各方面研究和多角度思考解答该题目。在很大程度上提高学生的逻辑思维能力,让学生的反应更灵活,增强他们对做题的自信,并且更喜欢学习。在变式教学中,教育者可以给学生提供更多数学练习,在不同数学练习中学生只有不断研究、不断对比,并且愿意主动去思考、去提问,才可以不被其他同学比下去。但是做题时学生不应该死板,在做题前应思考今天学习了什么知识,并与之前所做的题目相比较。在不断练习之后,他们会发现题目想要考查的知识点是相同的,只是题型不同而已。经过对不同题型的练习和思考,提升学生的解题速度,让学生了解一道题目可以用不同方法解决,很好地提高逻辑能力。

(一)变式教学的运用时机。进行变式教学时教育者应该选择合适的时间,就是在学生初步了解一项数学知识之后。刚教完数学概念后,学生对该条概念还不是十分了解,这个时候教育者就需要让学生练习不同题目对该项知识加以深刻了解和巩固。需要注意的是老师给出的题目应当从简单到复杂、从小到大。这样可以让学生一步步详细了解概念,而不是一开始就给学生难题让学生花费过多时间解决,结果可能就是学生无法做出该题目,并且对概念的理解还和之前一样,那么这将是无用功。

(二)改变问题的条件。在学生解决一个问题之后老师可以适当改变问题中的条件让学生练习。如证明一个四边形是平行四边形,我们知道证明一个图形是平行四边形有许多种方法,如证明两组对边平行或者一组对边平行且相等,如果在一道证明题中该题之前的条件为一组对边平行且相等,那么我们可以转变为两组对边平行,结论还是该四边形是平行四边形。但是改变条件后是运用了另一个原理证出平行四边形,不仅巩固学习内容,还让学生了解到问题的解决可以采取多种方法。对学生解决其他问题运用多种办法有促进作用。变式教学是通过不同方法、不同角度等反映出教学中的基础问题。通过变式教学不断提高学生的逻辑思维能力、应变能力和创新能力,并且有力地开发学生的潜能,让学生更热爱学习,同时减轻学习压力。可以说目前教学中变式教育是一种重要的教学方法,并且取得一定的成果。

七年级上数学课件 篇5

一、教材分析

“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。

二、教学目标

1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。

2、认识并能画出平面直角坐标系。

3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。

4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。

1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。

三、重点难点

1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。

2、教学难点:

⑴平面直角坐标系产生的过程及其必要性;

⑵教材中概念多,较为琐碎。如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。

四、教法学法

本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。教无定法,贵在得法。本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和讲练相结合的方法。教给学生良好的学习方法比直接教给学生知识更重要。

数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。教学时先让学生观察数轴上(一维)的点与实数之间的一一对应关系,在生活中确定平面内(二维)的点的位置的方法,再与数轴上的点加以类比,从而引出平面内的点的表示方法,同时在学习中体会数形结合的思想。为了提高课堂教学的效益,本节课将借助于多媒体课件与实物投影仪进行教学。

七年级上数学课件 篇6

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

一般地,还有一个数同0相加,仍得这个数。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

课本P24习题1.3第1、7题。

[知识与技能目标]

1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。

[过程与方法目标]

限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。

[情感态度与价值观]

借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。

借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。

字母,多鼓励学生通过观察、归纳、验证。

[课件展示,激趣感知]

博物馆、农场到学校与学校到博物馆农场的距离的关系。

[媒体展示课件,认知生活中的有些问题]

不考虑相反意义,只考虑具体数值。

[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。

实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。

[提出问题,引发讨论]

1、引导学生得出绝对值定义及表示方法。

2、同桌之间互相举例。

归纳绝对值概念,教师指出表示方法。

[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。

同桌之间举例,效果良好,体现了“自主——协作”学习。

1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。

2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。

学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。

[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。

学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。

积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。

学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。

师生归纳两页数比较大小的两种方法。

[探索用绝对值比较两负数的方法]

旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。

从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。

[绝对值比较两负数大小的运用]

[变成训练,巩固反馈]

继续对绝对值比较负数大小进行巩固练习。

由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。

[学生探究,教师点拨]

[媒体展示]

绝对值定义,代数意义及内在涵义的的灵活应用。

[知识延伸,目标升华]

充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。

学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、 教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

展开教学。

3、教学评价方式:

动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。

4.讨论与交流:

(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

又∵∠C=∠D ( 已知 ),

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

(3).概括形成邻补角、对顶角概念.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

一、判断题:

1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

二、填空题:

1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

三、解答题:

1.如图,直线AB、CD相交于点O.

(1)若∠AOC+∠BOD=100°,求各角的度数.

2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

七年级上数学课件 篇7

一、学生起点分析:

通过前几节解方程的学习,学生已经掌握了解方程的基本方法.在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程.

二、教学任务分析:

本课以“等积变形”为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生动手操作的方法分析问题,体会用图形语言分析复杂问题的优点,从而抓住等量关系“锻压前的体积=锻压后的体积”展开教学活动,让学生经历图形变换的应用等活动,展现运用方程解决实际问题的一般过程.因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性.

三、教学目标:

知识与技能:

1、借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接与间接设未知数的解题思路,从而建立方程,解决实际问题.

2、通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题意.

过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力.

情感态度与价值观:通过对“我变胖了”中的数学问题的探讨,使学生在动手、独立思考、的过程中,进一步体会方程模型的作用,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.

四、教学过程设计:

环节一 创设情景,引入新课

内容:同学们自己预习的基础上,用已经备好的橡皮泥,自制“瘦长”与“矮胖”的圆柱,观察分析个中现象.

考虑几个问题:

1、 手里的橡皮泥在手压前和手压后有何变化?

2、在你操作的过程中,圆柱由“瘦”变“胖”,圆柱的底面直径变了没有?圆柱的高呢?

3、在这个变化过程中,是否有不变的量?是什么没变?

目的:让学生在玩中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.

学生能够认识到: 手里的橡皮泥在手压前和手压后形状发生了变化,变胖了,变矮了.即高度和底面半径发生了改变.手压前后体积不变,重量不变.

环节二:运用情景,解决问题

内容: 例1、将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?

目的:将上述环节中体会到的形之间的变与不变的关系、量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.

实际效果:学生解答过程布列方程很顺利,有的学生还使用了下面的表格来帮助分析.

锻压前 锻压后

底面半径 5cm 10cm

高 36cm xcm

体积 π×25×36 π×100?x

由实验操作环节知“锻压前的体积=锻压后的体积”,从而得出方程.

解:设锻压后的圆柱的高为xcm,由题意得

π×25×36=π×100?x.

解之得 x=9.

此时有学生将π的值取3.14,代入方程,教师应在此时给予指导,不要早说,现在恰到好处!

(1) 此类题目中的π值由等式的基本性质就已约去,无须带具体值;

(2) 若是题目中的π值约不掉,也要看题目中对近似数有什么要求,再确定π值取到什么精确程度.

过程感悟:本节内容通过一幅几何图形展示题目中的一些数量关系,而实际操作的过程有同学将圆柱体变成了长方体,需要教师把握教育机会,引导学生作出相关的解释.

分析: 锻压前 锻压后

底面半径 5cm 长acm, 宽bcm

高 36cm xcm

体积 π×25×36 abx

环节三:操作实践,发现规律

内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内六个同学的计算结果,你发现了什么?

目的:我们知道, 感知到的东西往往没有自己亲手经历操作后的感受来得实在.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生观察、分析,归纳、总结等数学学习中不备数学思想与数学方法,也同时让学生感悟最复杂的问题中的道理,就在我们玩的过程,就在我们的生活中.

实际效果:

长(cm) 宽(cm) 面积(cm2)

长方形1 15 5 75

长方形2 13.6 6.4 86.4

长方形3 12.8 7.3 93.44

长方形4 11.6 8.4 97.44

长方形5 11 9 99

长方形6 10 10 100

由学生的实际操作得到的近似值已反映出来一个很好的规律.

学生:由操作的过程,同学们作出的长方形形状有“胖”有“瘦”, 反映到表中数据为, 当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.

过程感悟:不要把学生逼太紧,不要怕完不成进度,这个过程进行完后,学生对课本设置相关内容就剩下规范解题过程了.学生的理解远比直接先讲教材的例题效果要好的多.

环节四:练一练,体验数学模型

内容:课本例题

目的:体验“数学化”过程,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.

例2、 一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.

(1)此时长方形的长和宽各为多少米?

(2)若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)相比,有什么变化?

(3)若该长方形的长与宽相等,即围成一个正方形,那么正方形的边长是多少?它围成的长方形的面积与(2)相比,有什么变化?

实际效果:学生掌握很好.课本已有完整的解题过程,留做课后作业.

环节五:课堂小结

1.通过对“我变胖了”的了解,我们知道“锻压前体积=锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键.其中也蕴涵了许多变与不变的辨证的思想.

2.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.

3.学习中要善于将复杂问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.

环节六:布置作业

七年级上数学课件 篇8

教学内容:苏教版小学数学教材第48~49页“找规律”、“想想做做”第1~4题。

教学要求:

1、让学生经历探索日常生活中间隔排列的两种物体个数关系以及类似现象中简单数学规律的过程,初步体会和认识这种关系以及其中的简单规律,并运用规律解决一些简单的实际问题。

2、让学生感受数学与生活的广泛联系,培养学生用数学眼光观察周围事物,用数学的观点分析日常生活中各种现象的意识和能力,在探索活动中初步发展分析、比较和归纳等思维能力。

3、激发学生对数学问题的好奇心,发展学生的数学思考,逐步形成与人合作的意识和学习的自信心。

教学重点:经历一一间隔现象中简单规律的探索过程。

教学难点:用恰当的方式描述这一规律。

教学过程:

(一)课前游戏,引出规律

游戏1:拍手游戏

× ×┃×× ×┃× ×┃×× ×┃× ×┃×× ×┃

× ×┃×× ×┃× ×┃×× ×┃× ×┃×× ×‖

师生一起拍手,发现规律。

游戏2:手指游戏

引导学生发现手指根数和吸管根数之间的联系。

指出:当两种物体交替出现,也就是一个隔一个出现,在数学上称作一一间隔,这样的排列叫做一一间隔排列。

(二)开门见山,揭示课题

(三)创设情境,探索规律

1、观察:夹子与手帕,小兔与蘑菇,木桩与篱笆一一间隔排列。

2、探究

师:这些一一间隔排列的物体之间有没有像手指和吸管一样的规律存在呢?大家数一数,填写在作业纸的表格一中。

师:仔细观察表格中每组两种物体的个数,把你的发现填在表格下面的横线上,然后在小组里交流。

①夹子和手帕

生:夹子个数比手帕块数多 1。

师:反过来?

生:手帕块数比夹子个数少 1。

师:为什么夹子个数会比手帕块数多1,手帕块数比夹子个数少 1?

②小兔和蘑菇

生:小兔个数比蘑菇块数多 1,蘑菇块数比小兔个数个数少 1。

师:8只小兔中间有几个蘑菇?9只小兔呢?10只小兔呢?

师:为什么说得这么快?

生:根据规律说就快了。

③木桩和篱笆

生:树桩个数比篱笆个数多 1,篱笆个数比树桩个数少 1。

3、猜想

(1)提问:从位置上看,夹子、小兔、木桩在每组的排列中有什么相同的地方?

师:我们把处于一一间隔排列成一行两头的物体叫两端物体。(课件出示)

(2)师:每组中的两端物体相同吗?

(3)师:反过来,手帕、蘑菇、篱笆处于中间,就叫?

生:中间物体。(课件出示)

(4)师:猜一猜,两种物体一一间隔排成一行,两端物体相同,两端物体个数和中间物体个数之间有怎样的关系?如何用式子表示?

(四)动手操作,内化规律

展示交流。

师:看看他的3种不同摆法,小棒和圆在排列中有什么相同的地方吗?

师:小棒和圆一一间隔排成一行,两端都是小棒,我们发现的这些关系与前面猜想的规律一致吗?

(4)抽象规律模型

(课件出示)

师:大家用小棒和圆画出了许多摆法,我们可以用这样的图来表示(课件出示)。

师:看来,不管是什么物体,也不管有多少个,只要是一一间隔排成一行,两端相同,就有怎样的规律?谁来说说看?

师:反过来,中间物体个数?

(5)拓展延伸

师:两端是小棒时,100根小棒应摆几个圆片?100个圆片需要摆几根小棒?

(五)联系实际,巩固规律

1、寻找生活中具有一一间隔规律的物体

2、练习:

(1)马路一边有25根电线杆,每两根电线杆中间有一个广告牌。一共有多少个广告牌呢?

(2)折纸问题

(3)锯木问题

师:现在大家已经熟练掌握了规律,解决问题的速度就快了。

(六)游戏过渡,拓展规律

1、排成一行,两端物体不同

(课件出示)

师:仔细观察,它们是一一间隔排列的吗?与前面排列有什么不同?

师:发现什么了?

2、围成一圈,首尾相连

(1)师:有12名男生排成一行,我们用小棒代替,如果用用圆代替女生,每2根小棒之间摆1个圆,你觉得需要几个圆?

师:这时候需要摆几个圆呢?11个圆够吗?

师:发现小棒根数和圆的个数有什么关系?

师:这种现象在生活中也很常见。

3、小小设计师

①桃红柳绿

(课件出示:小操场照片)

师:小操场的一周准备栽10棵柳树,每两棵柳树中间栽一棵桃树,可以栽桃树多少棵?

师:你是怎么想的?

②鲜花锦簇

师:学校计划在校园里按照一一间隔排列的规律来摆设红黄两种鲜花。有4盆黄花,那么需要多少盆黄花?

欣赏学生设计作品。

(七)总结评价,延伸规律

师:这节课很快就结束了,回忆一下,你在这节课学到了哪些知识?

师:能具体说一说吗?

师:这些规律都经过我们的观察分析、实验验证过。可以说,有规律的现象无处不在,只要我们善于观察,就一定能发现更多规律,解决更多问题。

七年级上数学课件 篇9

●教材分析

1、出处:今天我说的课题是北师大版七年级上册《字母代表数复习课》的内容。

2、地位与作用:通过对字母代表数复习的学习,学生将对字母代表数有进一步的认识和理解,为后继方程应用题的学习奠定了坚实的基础.

●目标分析

一、教学目标

1、情感目标:在复习活动中让学生体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生成功学习数学的自信心和创新意识。

2、能力目标:培养学生归纳、总结等自我复习能力及团队合作精神,加强生与生之间的合作学习能力和综合运用数学知识解决实际生活问题的能力。

3、知识目标:

1梳理所学知识,形成一定的体系,并逐步掌握用代数式表达数量关系或变化规律的方法;能解释一些简单代数式的实际背景或几何意义,体会数学与现实世界的联系;经历探索事物之间的数量关系,并用字母与代数式表示,建立初步符号感,发展抽象思维.

二、重点、难点

重点:用字母把数和数量关系简明的表示出来,并进行化简、求值;

难点:探索具体事物之间的关系或变化规律,并用符号进行表示

●教法分析与教学设计

充分确立学生在教学中的主体地位,贯彻师生合作的精神,实现民主教学。为此我采用了“四环达标探究教学法”。基本流程:创设情景————合作探究——个性展示——反馈拓展——课堂小结——布置作业。

教学流程

(一)创设情景、导入课题

谈话激趣:今天很高兴和大家一起学习(和同学们握手),如果我和教室里的所有人握手,设包括我在内一共有n人,共需要握手多少次?如果两两相互握手,一共握手多少次?

(意图:本节课因为是复习课,比较枯燥,必须调动学生的情绪。首先我用一个情景引入,让学生明确本节课的目标,从而出示用字母表示数的标题。)

好了今天我们一起就来复习《字母表示数》。

(二)自主学习

填空

1、某工厂一月份加工产品a件,二月份加工的产品数比一月份加工的产品数的3倍少5件,则该厂两个月共加工产品______________件。

2、在a2b与-5ab2,-8m2与9m2,23与32, ab2与b2a中是同类项的是____________________________。

3、若-2xayb+2与3x2y6是同类项,则(-m) n=________________。

4、三个连续整数,中间一个是n,则这三个整数的和是___________________。

5、化简m-[n-2m-(m-n)]的结果是___________________。

6、代数式3a2-b2与a2+b2的差是_______________________。

7、-x-6=-( ),-{-[x-(y-z)]}=_________________。

8、若a+b=1,则6-a-b=_____________。(这个题体现的整体思想)

(意图:用题为载体呈现所学的相关离散性的知识。处理方式:让学生自主完成,在完成题后,然后提炼出知识点、相关方法、能力等写在黑板的右上与后面题提炼出的东西形成一个整体,从而形成结构)

(三)合作探究

1.同学们可能和我一样经常打的,已知出租车收费标准是:起步价3元,可乘3千米;超过3千米,每千米价1.2元。

1、老师坐了5千米,需要多少钱?(5.4)

2、若我乘坐了x(x>3)千米的路程,则我应支付的费用是多少?

3+1.2(x-3)=1.2x-0.6

3、若我支付了9元车费,你能算出我坐了多远吗?8千米

(意图:我用坐出租车的生活实例,将数字运算过渡到列代数式、求解,让学生初步感受字母表示数的优越性。因为本题的后两小问有点难度,通过小组合作把它做出来。)

2.找规律下列每个图形都是若干个棋子围成的正方形图案,图案每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案棋子总数为S,按下图的排列规律推断,S与n之间的关系可以用式子______________来表示。

n=2 n=3 n=4 n=5

S=4 S=8 S=12 S=16

(意图:本题先从用特殊的数字入手,进而让学生发现这样的等式无穷多,产生对字母的需求,想到可以用字母表示这个规律,由特殊到一般,初步体验字母在规律中的应用。值得注意的是,学生可能出现多个答案,也可能写出左边后直接去括号,要引导学生进行辨别。)

3、观察下列图形

填表:(当梯形的个数为n,用代数式表示火柴根数时,需暴露学生思维,小结学生的各种方法)

梯形个数1 2 3 … n

火柴根数

(下面设计了三个问题,考虑的是让学生熟悉运算顺序,同时通过求值可检验规律的正确性)

(1)、当梯形的个数是n时,火柴的根数是多少?

(2)、当n=20xx时,结果是多少?

(3)、火柴根数可以是20xx吗?

(四)个性展示

意图:以上三个题由易到难,规律也各不相同,让学生意识到生活中有很多有趣的数学问题。然后在此进行总结,字母可以表示数,可以表示规律,还可以表示等量关系,从而进行能力方法迁移,这样即能训练巩固又可以过渡到新问题,并把试题的形式变丰富。在合作完之后,让小组长到讲台上来,把他们小组的见解讲给其他学生听,其他小组成员可以适当补充,充分体现学生自主的课堂)

(五)反馈拓展

提升训练:

按下面方式摆放桌椅:

图1

(1)1张桌子配6张椅子,2张桌子配把张椅子

(2)按照上面桌椅的摆放方式,寻找到的规律来完成下面表格

桌子数1 2 3 4 5 6 7 … n

椅子数

(3)某同学生日Party,在一正方形餐厅中安排40人同时就餐(要求没有剩余椅子),怎样摆放呢?

如果用2张拼成1张大桌子,需拼张大桌子,共需要张小桌子;

如果用3张拼成1张大桌子和6张拼成1张大桌子,共需要张小桌子;

还有别的拼法吗?

(4)若桌椅按下列方式摆放,填写下表:

图2

桌子数1 2 3 4 5 6 … n

椅子数…

如果也要求坐40人(没有剩余椅子),又可以怎样拼呢?

(5)如果你当经理要安排40人进餐,你会选择哪种餐桌的摆法?画图并说理(要求没有剩余的椅子,可以从图1或图2中选择一种摆放方式,也可以两种图并用)

(意图:本例通过教材中的题进行延伸,是本节课挖掘的重点,设置了5个问题,层层递进,由特殊到一般先找出规律,然后将规律运用到实际生活中,并根据2n+4和4n+2进行优化选择,给学生思维空间,突出开放性)

(六)课堂小结

1、这一节课我们一起学习了哪些知识?

2、对这些内容你有什么体会,请与你的同伴交流.

(七)布置作业p129 T 1、2、3

七年级上数学课件 篇10

教学目标

在了解同底数幂乘法意义的基础上掌握法则,会进行同底数幂的乘法基本运算。

在推导法则的过程中,培养观察、概括与抽象的能力。

通过对具体事例的观察和分析,归纳、总结出同底数幂乘法的法则,培养学生归纳、总结,以及从特殊到一般的抽象概括等思维能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点难点

重点

同底数幂相乘的法则的推理过程及运用

难点

同底数幂相乘的运算法则的推理过程

教学过程

一、温故知新

1. 表示什么意义?(是乘方运算,表示10个2相乘;也可以用来表示运算的结果)

2.下列四个式子① ,② ,③ ④ 中,运算结果是 的有哪些?你能说明理由吗?(学生通过讨论,明确两个幂只有当底数相同时才可以乘起来,同时初步感受计算的方法)

3.光的传播速度是每秒 米,若一年以 秒计算,那么光走一年的路程是多少米呢?

学生列出式子 。这个式子怎样运算呢?解决这个问题的关键是弄清楚两个同底数幂相乘的一般方法,下面我们就来探索同底数幂的乘法法则。

二、新课讲解

探究新知

你能计算出 吗?

学生解答,教师板书

那么 等于多少呢?更一般的, 等于多少呢?

学生回答,教师板书

你发现运算的方法了吗?

师生共同概括归纳出同底数幂乘法的法则:

同底数幂相乘,底数不变,指数相加。

用公式表示是: (、n都是正整数)

动脑筋

当3个或三个以上的同底数幂相乘时,怎样用公式表示运算的结果呢?

学生思考并讨论解答,最后教师总结: (,n,p都是正整数)

三、典例剖析

例1 计算:(1) ;(2)

分析:直接运用公式计算,教师板书计算过程,强调初学时要注意弄清楚计算的步骤。

例2 计算:(1) ;(2)

让学生独立完成。这题意在进一步训练运用法则进行计算,注意观察学生是否会用法则进行计算,点评时要强调对法则的运用。

例3 计算:(1) ;(2)

学生解答并讨论,教师注意拓展学生对法则的运用,培养符号演算的能力,指出公式中的底数可以是具体的数,也可以是字母或式子表示的'数,提高学生的运算能力。

四、课堂练习

基础训练:

1.计算:

(1) ;(2) ;(3) ;(4)

2.计算:

(1) ;(2) ;(3) ;(4)

(学生解答各题,教师组织学生互相批改,对学生出错比较多的地方做讲解和变式训练)

提高训练

3. 计算 ;(2)

4.制作拉面需将长条形面团摔匀拉伸后对折,并不断重复若干次这组动作. 随着不断地对折, 面条根数不断增加. 若一碗面约有64 根面条,则面团需要对折多少次? 若一个拉面店一天能卖出2 048 碗拉面,用底数为2的幂表示拉面的总根数。

(用以提升学生运算的灵活性,提高学习兴趣。)

五、小结

师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。(如:对法则的理解,解决了什么问题,体会从特殊到一般探索规律的数学思想等等)

六、布置作业

教材P40 第1题,P41 第12题

七年级上数学课件 篇11

第4课时单项式的乘法

会进行单项式与单项式相乘的运算。

理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的数学思想。

在探索单项式与单项式相乘的过程中,利用乘法交换律和结合律将未知的问题转化为已知的问题,培养学生转化的数学思想。

使学生获得成就感,培养学习数学的兴趣。

重点

单项式与单项式相乘的运算法则及其运用

难点

灵活地进行单项式与单项式相乘的运算。

1.请用式子表示幂的三个运算法则,乘法的交换律和结合律。

2.光走一年的路程是:,请计算结果并说说用到了哪些学过的知识。

3.边长为的正方形的面积是多少?长为,宽为的长方形的面积是多少?

学生先尝试独立解决,然后互相交流,之后教师指出式子是单项式乘以单项式,下面我们来研究单项式乘以单项式的运算方法。

探究新知

1.怎样计算?你能说说每步计算的依据吗?

教师根据学生的回答板书:

(乘法交换律、结合律)

(同底数幂的乘法)

2.你能根据上面的运算,用文字叙述一下单项式乘单项式的方法吗?

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与单项式相乘,把它们的系数、同底数幂分别相乘.

通过乘法交换律、结合律,把要解决的单项式相乘问题转化成已经解决了的幂的运算问题,体现了转化的数学思想。

例1.计算:

(1);

(2);

(3)(n是正整数).

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误,然后做点评:

(1)单项式的乘法应遵循“符号优先”,要特别重视符号的运算;

(2)有乘方时要先算乘方,再算乘法;

(3)单项式乘单项式,其结果仍是单项式;

(4)不要漏写只在一个单项式里含有的因式。

1.计算:

(1);

(2);

2.下面的计算对不对?如果不对,怎样改正?

3.计算(其中n是正整数):

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要注意运算步骤和符号运算。

师生共同回顾单项式乘法的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

P40第4、6题

七年级上数学课件 篇12

掌握积的乘方法则,并能够运用法则进行计算。

会进行简单的幂的混合运算。

在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。

让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。

重点

积的乘方法则的运用。

难点

积的乘方法则的推导以及幂的混合运算。

一、复习导入

1.幂的乘方法则是什么?

2.如果一个正方体的棱长为,那么它的体积是多少?

如何计算呢?下面我们就来探索积的乘方的运算法则。

二、新课讲解

探究新知

1.思考:

前面我们学习了同底数幂的乘法、幂的乘方,你能根据前面的学习方法计算吗?

学生讨论,师生共同写出解答过程:

2.发现:

从上面的计算中你发现积的乘方的运算方法了吗?换几个数或字母试试,与你的同学交流。

通过思考、交流,得出:(n是正整数)

要求学生完成法则的语言叙述和推导过程。

用语言叙述:积的乘方,等于把积中每一个因式分别乘方,再把所得的幂相乘。

推导过程:略

3.思考:三个或三个以上因式的积的乘方,是否也具有上面的性质?怎样用公式表示?

学生独立思考、互相交流,然后向全班汇报成果。

三、典例剖析

例1计算:

师生共同分析,教师板书,强调每个因式都要乘方,符号的确定,以及运算的步骤,培养学生细致、有条理的良好习惯。

例2计算:

先让学生独立思考作答,然后全班讨论交流,让学生体验分析解决问题的过程,积累解决问题的经验。此题是幂的混合运算,正确分析计算步骤,正确使用运算法则,注意符号运算是成功的关键。

四、课堂练习

基础练习

1.计算:

2.下面的计算对不对?如果不对,应怎样改正?

3.计算:

教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因。第3题是混合运算,要分析运算步骤,处理好符号。

提高训练:

3.计算:

五、小结

师生共同回顾幂的运算法则,交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

1.P40第3题

2.计算:

"数学七年级教案"延伸阅读