搜索

高一函数课件

发布时间: 2023.07.03

高一函数课件锦集14篇。

资料的定义范围较大,可指代生产资料。当我们的学习遇到难题时,经常都会用到资料进行参考。有了资料,这样接下来工作才会更上一层楼!所以,您有没有了解过资料的种类呢?考虑到你的需求,小编特意整理了“高一函数课件锦集14篇”,供您参考,并请收藏本页!

高一函数课件(篇1)

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

高一函数课件(篇2)

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

作者通过祥林嫂在鲁家生活的情况,写出了她的争扎与反抗。

③祥林嫂在鲁家的生活是极其悲惨的:为什么说她反满足?

她希望凭借辛勤的劳动来换取起码的生活,寻求一条活路。这就鲜明地揭示出她勤劳、善良、质朴、顽强的性格,以及在生活道路上的争扎。

然而,勤劳、善良的祥林嫂想通过加倍的劳动来摆脱悲惨的命运的愿望,很快破灭了。她在鲁家做工只三个半月,由于鲁四老爷的支持(P:既然她的婆婆要她回去可说呢),被她婆婆像捆牲口一样,捆了躺在船板上,被抢了回去,封建的族权再次向她伸出了魔掌。

2.发展:

祥林嫂被迫改嫁到深山野是故事情节的发展。在这一部分中,哪些地方写出了封建宗法制度对祥林嫂的迫害而显示出了这种迫害是很残酷的呢?

高一函数课件(篇3)

一、教材分析

本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1 函数的概念》共3课时,本节课是第1课时。

托马斯说:“函数概念是近代数学思想之花”。 生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。

函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。函数的的重要性正如恩格斯所说:“数学中的转折点是笛卡尔的变数,有了变数,运动就进入了数学;有了变数,辩证法就进入了数学”。

二、学生学习情况分析

函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;(三)高中用导数工具研究函数的单调性和最值。

1.有利条件

现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。

初中用运动变化的观点对函数进行定义的,它反映了历史上人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。

2.不利条件

用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的理解能力是一个挑战,是本节课教学的一个不利条件。

三、教学目标分析

课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.

1.知识与能力目标:

⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;

⑵理解函数的三要素的含义及其相互关系;

⑶会求简单函数的定义域和值域

2.过程与方法目标:

⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;

⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.

3.情感、态度与价值观目标:

感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。

四、教学重点、难点分析

1.教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;

重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。 但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。

突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。

2.教学难点:第一:从实际问题中提炼出抽象的概念;第二:符号“y=f(x)”的含义的理解.

难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。

突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。

五、教法与学法分析

1.教法分析

本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。

2.学法分析

在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。

高一函数课件(篇4)

【内容】建立函数模型刻画现实问题

【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

【教学目标】

1体现建立函数模型刻画现实问题的基本过程.

2了解函数模型的广泛应用

3通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力

4提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度

【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用

【难点】建立函数模型刻画现实问题中数据的处理

【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求目标1,2,3在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标目标4

【学生学习中预期的问题及解决方案预设】

①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验

针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.

【教学用具】多媒体辅助教学ppt、计算机。

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

【教学过程】

教学前言:

函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.

教学内容师生活动设计意图

探究新知引入:

教师:大家觉得我胖吗?

学生回答

教师:我们在街上见到一个人总是会判断这个人的胖瘦,我们衡量一个人的胖瘦一般是以自己或是他人为标准的,那么我们还见过一些用来计算人胖瘦的式子,目前全世界都使用体重指数BMI来衡量一个人胖或不胖:

体重/身高?以米为单位BMI在18.5-22.5时属正常范围,BMI大于22.5为超重,BMI大于30为肥胖。

教师在黑板上计算一下自己的结果。那既然能用一个式子来计算,说明我们可以把这个问题用数学知识来解决,要得到这个式子之类的标准,我们能用一个人的身高和体重来确定吗?

学生回答

教师:当然是找的人越多越好,那我们在课上先少找几个人来研究一下吧,每个小组选一个同学说一下你的身高和体重吧

学生说,教师把相关数据填在用ppT展示的一张表格上

教师:好,有了这些数据我们就可以来研究了,那接下来我们怎么来处理刚收集到的这些数据呢?

学生回答预期:画散点图——连线——找函数

教师:好,大家按小组先画图连线然后讨论一下你们小组认为哪个函数的图像符合

学生活动并回答

教师:好,那大家分一下工,你们几个小组来计算这个函数解析式,那几个小组来计算那个函数解析式……

学生分小组活动……

教师:把学生算出的式子写在黑板上大家计算出的解析式为什么会不完全相同呢?

学生回答

教师:我们计算的函数解析式是不是都可以用来刻画这个问题呢?

学生回答

教师:我们要怎么样来检验呢?

学生回答代入其它的点来验证

教师:那大家来检验一下哪个模型更符合数据情况

学生分小组进行检验

教师:好了,我们利用刚才收集的数据通过我们的努力得出了一个式子,它也就是符合大家的情况的一个胖瘦的标准,既是我们班的一个标准,能用来衡量其它班的同学吗?那我们来计算一下老师的结果是什么样的.

教师:可见用世界肥胖标准对老师的体重进行的评价和所建立的数学模型计算的结果是基本一致的。由此可见,所建立的模型是大体符合实际情况,看来老师是真得要下定决心减肥了.

教师由生活中常见到的现象引出问题,并引导学生进行思考

学生合作探究、动手实践,借助小组利用数据表格来确定可行的函数模型,并展示自己的结果

教师引导学生对结果进行检验

学生通过计算器与作图,利用小组合作在完成任务的同时形成本节重点并突破难点

通过日常生活的例子引出本节主要内容,来提高学生本节课学习的兴趣,提高小组学习的效率

学生利用小组合作在完成任务的同时形成本节重点的框架:函数刻画实际问题的基本过程.从而实现教学目标1,3,4

课堂小结

教师:我们一起来回忆一下刚才解决问题的过程引导学生集体回答

得出:函数建模刻画现实问题的基本过程:教师用ppT展示

教师:

①下面大家把自己的数据输入计算一下你的情况是什么样的

②大家在课下可以利用研究性学习的时间,调查一下全年级的同学的身高和体重来研究一下,并进一步体会函数建模来刻画现实问题的基本过程

教师用ppT展示函数建模刻画现实问题的基本过程

教师留下一个扩展性作业,让学生课后完成

学生通过探究从而巩固教学目标1,2,3,4.并形成本节重点.

把问题进行拓展,让学生去亲身体会函数建模刻画现实问题的基本过程,从而巩固了本节教学目标

课后反思

高一函数课件(篇5)

同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

那么,祥林嫂是如何对待新迫害的呢?

3.高潮:

①祥林嫂为什么又一次来到鲁四老爷家?

②有人认为,丧夫失子有偶然性,这种看法对不对?

丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更大的打击。

③在鲁四老爷,人们对待祥林嫂这个嫁而再寡的不幸女人态度如何?

A.鲁四老爷的态度:

鲁四老爷站在顽固维护封建宗法制度的立场上,从精神上残酷地虐杀她。他暗暗地告诫四婶的那段话,就是置祥林嫂于死地而又不露一丝血痕的软刀子。(通过四婶先后喊出三句你放着罢,杀人不见血地葬送了祥林嫂的性命。)

B.人们的态度:

人们叫她的声调和先前很不同。

鲁迅用他那犀利的笔锋,从广阔的领域里揭示了封建社会黑暗的程度。

人们对祥林嫂的态度,使她感到痛苦与迷惑。她不时地向人们诉说着自己不幸的遭遇,她的精神却惨遭蹂躏。而柳妈的说鬼又给祥林嫂新的打击。

C.柳妈说鬼:

④祥林嫂是如何对待这如此沉重的打击的?其结果如何?

为了争得做人的权利,为了求得一线生存的希望,她在竭尽全力地反抗着:

她背着沉重的精神包袱,整日劳碌着,以便积够十二元鹰洋,用捐门槛的方法去摆脱人们在阳世、阴世间给她设下的罪名,她忍受着咬啮人心的嘲笑和侮辱,在无边的寂寞和悲哀中,默默干了一年,这是何等坚韧的反抗精神啊!

而反抗的结果,出乎柳妈、祥林嫂的预想,这血淋淋的事实深刻地说明了:祥林嫂是无法赎罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.结局:

当祥林嫂被折磨得像木偶人,丧失了当牛做马的条件后,鲁四老爷就一脚把她踢出门外,使她终于成了只有那眼珠间或一轮,还可以表示她是一个活物的僵尸。即使这样,她在临死前,还向我提出了三个问题:

A.一个人死了之后,究竟有没有魂灵的?

B.那么,也就有地狱了?

C.那么,死掉的一家的人,都能见面的?

这是对魂灵的有无表示疑惑。

她希望人死后有灵魂,因为她想看见自己的儿子;她害怕人死后有灵魂,因为她害怕在阴间被锯成两半。这种疑惑是她对自己命运的疑惑,但也正是这种疑惑,这种无法解脱的矛盾,使她在临死前受到了极大的精神折磨,最后,悲惨地死去。

从祥林嫂一生的悲惨遭遇中,可以清楚地看到,封建的宗法制度正是用政权、族权、神权、夫权这四条绳索把祥林嫂活活地勒死的。

祥林嫂一生的悲惨遭遇,正是旧中国千百万劳动妇女悲惨遭遇的真实写照。作者正是通过塑造祥林嫂这一典型人物,对吃人的封建制度和封建礼教进行深刻的揭露和有力地抨击的。

小结:

祥林嫂是生活在旧中国的一个被践踏、被愚弄、被迫害、被鄙视的勤劳、善良、质朴、顽强的劳动妇女的典型形象。

总之,祥林嫂的悲剧是一个社会悲剧,造成这一悲剧的根源是封建礼教对中国劳动妇女的摧残和封建思想对当时中国社会的根深蒂固的统治。

第三课时

本课时重点分析鲁四老爷、我和柳妈的形象。

一、检查作业:

二、分析鲁四老爷:

鲁四老爷是当时农村中地主阶级的代表人物,是资产阶级民主革命时期地主阶级知识分子的典型形象。他政治上迂腐、保守,顽固地维护旧有的封建制度,反对一切改革与革命。他思想上反动,尊崇理学和孔孟之道。自觉维护封建制度和封建礼教。他是造成祥林嫂悲剧的一个重要人物。

1.作者是通过什么手法来刻画这个人物的呢?

①间接描写:

通过鲁四老爷的书房陈设的描写,点明了鲁四老爷的身分(地主阶级、封建理学的卫道士),揭露了他的丑恶本质,从而揭示出他成为杀害祥林嫂的刽子手的深刻的阶级根源和思想根源。

②直接描写:

A.行动描写:

这表现在祥林嫂被抢走的两件事上:

当婆婆一边抢人一边来领工钱时,鲁四老爷把祥林嫂一文还没有的工钱全交给了婆婆。

与此相对照的是对被压迫的寡妇祥林嫂的冷酷无情。

祥林嫂曾那样辛勤地为鲁家劳动过,可当她遭到恶运时,鲁家却无动于衷,连祥林嫂走没走、怎么走的,都毫不过问,只是到了正午,四婶肚子饿了,这才想起了祥林嫂淘米时拿走米和淘箩,于是倾巢出动分头寻淘箩;连平时摆派头、端架子的鲁四老爷都踱出门外,直到河边,等看见米和淘箩平平正正的放在岸上,旁边还有一株菜时,这才放心。这场虚惊,入木三分地揭露了:在封建统治者的眼里,一个劳动妇女的命运都不如一个淘箩、一点米、一株菜,鲁四老爷冷酷残忍的嘴脸跃然纸上。

B.语言描写:

在祥林嫂的问题上,鲁四老爷一共开过六次口,说了百十来个字,却就把他反动、顽固、虚伪自私、阴险狠毒的性格特征,把他杀害祥林嫂的罪行,揭露得淋漓尽致。

a.祥林嫂被抢前:

b.祥林嫂被抢时:

c.当他为寻淘箩,踱到河边时:

d.紧接着,午饭之后,卫婆子又来时:

e.对四婶的暗暗告诫:

f.祥林嫂死后:

作为这六次开口背景的是鲁四老爷虚伪寒暄后的大骂其新党,它恰恰深刻地揭示了那六次开口的根源。

三、分析我这一形象:

小说中的我是一个具有进步思想的小资产阶级知识分子的形象。我有反封建的思想倾向,憎恶鲁四老爷,同情祥林嫂。对祥林嫂提出的魂灵的有无的问题,之所以作了含糊的回答,有其善良的一面;同时也反映了我的软弱和无能。

在小说的结构上,我又起着线索的作用。祥林嫂一生的悲惨遭遇都是通过我的所见所闻来展现的。我是事件的见证人。

四、分析柳妈:

问:有人认为柳妈是帮助鲁四老爷杀害祥林嫂的凶手。你是怎样来看待这一问题呢?

明确:柳妈和祥林嫂一样都是旧社会的受害者。虽然她脸上已经打皱,眼睛已经干枯,可是在年节时还要给地主去帮工,可见,她也是一个受压迫的劳动妇女。但是,由于她受封建迷信思想和封建礼教的毒害很深,相信天堂、地狱之类邪说和饿死事小,失节事大的理学信条,所以她对祥林嫂改嫁时头上留下的伤疤,采取奚落的态度。至于她讲阴司故事给祥林嫂听,也完全出于善意,主观愿望还是想为祥林嫂寻求赎罪的办法,救她跳出苦海,并非要置祥林嫂于死地,只是结果适得其反。

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

高一函数课件(篇6)

高一数学指数函数教案:教学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高一数学指数函数教案:教学建议

高一数学指数函数教案:教材分析

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

高一数学指数函数教案:教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一函数课件(篇7)

一、学习目标与自我评估

1掌握利用单位圆的几何方法作函数的图象

2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3会用代数方法求等函数的周期

4理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”,周期的求解。

三、学法指导

1、是周期函数是指对定义域中所有都有

,即应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度与时间之间的函数关系如图所示

(1)求该函数的周期;

(2)求时钟摆的高度。

例2、求下列函数的周期。

(1)(2)

总结:(1)函数(其中均为常数,且

的周期T=。

(2)函数(其中均为常数,且

的周期T=。

例3、求证:的周期为。

例4、(1)研究和函数的图象,分析其周期性。

(2)求证:的周期为(其中均为常数,

总结:函数(其中均为常数,且

的周期T=。

例5、(1)求的周期。

(2)已知满足,求证:是周期函数

课后思考:能否利用单位圆作函数的图象。

六、作业:

七、自主体验与运用

1、函数的周期为()

A、B、C、D、

2、函数的最小正周期是()

A、B、C、D、

3、函数的最小正周期是()

A、B、C、D、

4、函数的周期是()

A、B、C、D、

5、设是定义域为R,最小正周期为的函数,

若,则的值等于()

A、1B、C、0D、

6、函数的最小正周期是,则

7、已知函数的最小正周期不大于2,则正整数

的最小值是

8、求函数的最小正周期为T,且,则正整数

的值是

9、已知函数是周期为6的奇函数,且则

10、若函数,则

11、用周期的定义分析的周期。

12、已知函数,如果使的周期在内,求

正整数的值

13、一机械振动中,某质子离开平衡位置的位移与时间之间的

函数关系如图所示:

(1)求该函数的周期;

(2)求时,该质点离开平衡位置的位移。

14、已知是定义在R上的函数,且对任意有

成立,

(1)证明:是周期函数;

(2)若求的值。

高一函数课件(篇8)

1.2解三角形应用举例第四课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题,掌握三角形的面积公式的简单推导和应用

2、本节课补充了三角形新的面积公式,巧妙设疑,引导学生证明,同时总结出该公式的特点,循序渐进地具体运用于相关的题型。另外本节课的证明题体现了前面所学知识的生动运用,教师要放手让学生摸索,使学生在具体的论证中灵活把握正弦定理和余弦定理的特点,能不拘一格,一题多解。只要学生自行掌握了两定理的特点,就能很快开阔思维,有利地进一步突破难点。

3、让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

二、教学重点、难点

重点:推导三角形的面积公式并解决简单的相关题目

难点:利用正弦定理、余弦定理来求证简单的证明题

三、教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为h、h、h,那么它们如何用已知边和角表示?

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

师:根据以前学过的三角形面积公式S=ah,应用以上求出的高的公式如h=bsinC代入,可以推导出下面的三角形面积公式,S=absinC,大家能推出其它的几个公式吗?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.讲授新课

[范例讲解]

例1、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三边的长分别为a=3cm,b=4cm,c=6cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:略

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm)?

思考:你能把这一实际问题化归为一道数学题目吗?

本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB==≈0.7532

sinB=0.6578应用S=acsinB

S≈681270.6578≈2840.38(m)

答:这个区域的面积是2840.38m。

变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S

提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求证:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:这是一道关于三角形边角关系恒等式的证明问题,观察式子左右两边的特点,用正弦定理来证明

证明:(1)根据正弦定理,可设

===k显然k0,所以

左边===右边

(2)根据余弦定理的推论,

右边=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左边

变式练习2:判断满足sinC=条件的三角形形状

提示:利用正弦定理或余弦定理,“化边为角”或“化角为边”(解略)直角三角形

Ⅲ.课堂练习课本第18页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。

Ⅴ.课后作业

《习案》作业七

高一函数课件(篇9)

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

高一函数课件(篇10)

教学目标:

掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.

教学重点:

二倍角公式的推导及简单应用.

教学难点:

理解倍角公式,用单角的三角函数表示二倍角的三角函数.

教学过程:

Ⅰ.课题导入

前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.

先回忆和角公式

sin(α+β)=sinαcosβ+cosαsinβ

当α=β时,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

当α=β时cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

当α=β时,tan2α=2tanα1-tan2α

Ⅱ.讲授新课

同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α

同学们是否也考虑到了呢?

另外运用这些公式要注意如下几点:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2+kπ及α≠π4+kπ2(k∈Z)时才成立,否则不成立(因为当α=π2+kπ,k∈Z时,tanα的值不存在;当α=π4+kπ2,k∈Z时tan2α的值不存在).

当α=π2+kπ(k∈Z)时,虽然tanα的值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:

即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情况下,sin2α≠2sinα

例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情况下,才有可能成立

高一函数课件(篇11)

1.2解三角形应用举例第二课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

二、教学重点、难点

重点:结合实际测量工具,解决生活中的测量高度问题

难点:能观察较复杂的图形,从中找到解决问题的关键条件

三、教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.讲授新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。

解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)

师:根据已知条件,大家能设计出解题方案吗?

若在ABD中求CD,则关键需要求出哪条边呢?

生:需求出BD边。

师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根据正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

将测量数据代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度约为150米.

思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?(BC边)

解:在ABC中,A=15,C=25-15=10,根据正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习:课本第17页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业

作业:《习案》作业五

高一数学教案:《函数》教学设计

高一数学教案:《函数》教学设计

教学目标

1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.

(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.

(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.

(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.

2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.

学过什么函数?

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2函数

一、函数的概念

高一函数课件(篇12)

一考纲要求。

1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

二.高考趋势。

函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。

三.要点回顾

解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。

四.基础训练。

1.在一定的范围内,某种产品的购买量吨与单价元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨700元,那么客户购买400吨,单价应该是

2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.

3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润L元与每件产品的售价的函数关系式为.

4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。

5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。

可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。

6.在边长为4的正方形ABCD的边上有一点p沿着折线BCDA,由B点(起点)向A点(终点)移动,设p点移动的路程为,的面积与点p移动的路程间的函数关系式为

五.例题精讲。

例1.某村计划建造一个室内面积为800的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积?种植面积是多少?

例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。

1当每辆车的月租金定为3600元时,能租出多少辆车?

2当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?

例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题

1写出城市人口总数(万人)与年份(年)的函数关系式

2计算xx以后该城市人口总数(精确到0.1万人)

3计算大约多少年以后该城市人口将达到120万人(精确到1年)

六.巩固练习:.

1.铁路机车运行1小时所需的成本由两部分组成:固定部分元,变动部分(元)与运行速度(千米/小时)的平方成正比,比例系数为,如果机车匀速从甲站开往乙站,甲,乙两站间的距离为500千米,则机车从甲站运行到乙站的总成本与机车的速度之间的函数关系为

2.某公司有60万元资金,计划投资甲,乙两个项目,按要求,对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不少于5万元,对项目甲投资1万元可获得0.4万元的利润,对项目乙投资1万元可获得0.6万元的利润,该公司正确规划后,在这两个项目上共可获得的利润为

3.将进货单价为80元的商品按90元一个出售时,能卖出400个,已知该商品每个上涨1元,其销售量就减少20个,为获得利润,售价应定为

4.某地每年消耗木材约20万立方米,没立方米木料价格为240元,为了减少木材消耗,决定按木料价格的%征收木材税,这样每年木材消耗量减少万立方米,为了既减少木材消耗又保证税金收入每年不少于90万元,则的取值范围为

5.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过年后的剩留质量为,则与之间的函数关系为

6.某公司一年共购买某种货物400吨,每次购买吨,运费为4万元/吨,一年总储存费用4万元,要使一年的总运费与总储存费用之和最小,则=

7.用总长为14.8的钢条做一个长方体容器的框架,如果所做容器有一边比另一边长0.5,则它的容积为

8.某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元),问该产品每月生产吨才能使利润达到,利润是万元

9.有甲,乙两种产品经营销售这两种商品所获得的利润依次是和(万元)它们与投入的资金(万元)的关系,有经验公式,。今有3万元资金投入经营甲、乙两种商品,为了获得利润,对甲、乙两种商品的资金投入分别应是多少?最多能获得多大的利润?

高一函数课件(篇13)

教学目的:

1.训练按一定目的从课文中筛选信息的能力。

2.理解辩证立论,重点突出,广征博引,逐层深人的写法。

3.认识治学中占有材料与钻研理论的关系;树立实践第一的辩证唯物主义观点。

教学设想:

1.解读,关键要抓住“虚”与“实”的关系,理清课文的脉络,重点认识围绕基本观点立论辩证,广征博引、层层深人的论述特点,理清文章观点与材料之间的关系,把握课文的重点。

2.安排二课时。

教学过程及步骤:

一、开场白:

1980年10月22日,中国语言学会成立。吕叔湘先了题为《把我国语言科学推向前进》的讲话。全文分“中和外的关系”、“虚和实的关系”、“动和静的关系”、“通和专的关系”四个部分,分别论述了语言研究工作中需要处理好的四对关系。是其中的第二部分。题目是选作教材时编者加的。文章虽然“主要谈汉语研究”,但正如作者所言“在不同程度上也适用于其他方面”,对于一般治学和研究问题,对于中职学生的学习,包括.写作时处理好选材与立意的关系,都具有重要的指导意义。

二、作者简介:

吕叔湘(1904—1998),江苏丹阳人。当代著名语言学家、语文教育家,先后担任中国社会科学院语言研究所研究员、所长,兼任《中国语文》杂志主编,全国文字改革研究会主席,中国语言学会会长,语文出版社社长,并担任全国政协第二、三届委员,全国人大第三、四、五、六届代表,五届常委,法制委员会委员。他于1926年毕业于国立东南大学,曾任过中学教员。1936年留学英国,1938年回国。先后任云南大学文史系副教授、华西协和大学中国文化研究所研究员、金陵大学文化研究所研究员兼中央大学中文系教授、开明书店编辑。建国后任清华大学中文系教授,1952年到中国社会科学院语言研究所工作。他几十年来一直从事语文教学和研究,重点研究汉语语法,对我国语言学的发展作出了重要贡献。主要著作有《中国文法要略》、《语法修辞讲话》、《现代汉语八百词》等。他治学严谨,著述材料丰富,引证充分,阐述详尽,见解精辟。他还写有许多普及性语文读物,通俗实用,生动有趣。

三、分析课文:

全文共11段,可分为三个部分。

第一部分(第1~2段):系全文的总纲,提出论题并表明了观点:理论从事例中来,事例从观察中来、从实验中来。文章首句提出论题,紧接着以两个设问表明了观点。在接下来的阐述中,作者以语言学研究为例说明了理论来自于事例,事例来自于观察和实验的道理。文章的第2段运用古人做学问、国外各种学派林立和“禅宗和尚”的例子阐述对前人的理论也要靠观察来验证的道理。在论述中,作者既承认“前人的理论是我们的财富”,又指出“前人的理论无论多么重要”,都“要用自己的观察来验证”;既肯定了讲“家法”的好处,又指出其缺点,全面辩证,客观公允,令人信服。这一段是对第1段的进一步强调和补充。

第二部分(第3~6段):具体阐述理论和事实的辩证关系并指出了具体的处理方法。第3段从事实对理论的作用角度举出“反切”、“等韵”和“文字学”等理论的形成作为例证,指出事实能够决定理论。第4段从比较理论和事实轻重的角度,运用达尔文物种起源理论的形成和明朝两位理学家的故事作为论据,指出没有事实作基础,理论就靠不住,更加突出了事实对理论的决定性作用。第5段是从理论对事实的作用角度,肯定了理论能引导人去发现事实的作用。运用了门捷列夫元素周期表填写等例子。第6段具体提出处理二者关系的方法,特别强调“不可走极端”。这一部分的论述强调了事实对理论的决定性作用,其目的在于纠正现实中存在的重理论轻事实的认识。可贵的是作者“矫枉”而不“过正”,没有偏执一端,没有抹杀理论在治学中的作用,而是在轻重有别、详略有致、突出重点的同时,兼顾到了事物的各个方面,从而显得全面周到,辩证科学。作者对问题认识的深刻性和完整性由此可见一斑。

第三部分(第7~11段):着重论述观察和实验方面的有关问题。文章联系实际,在分析重理论轻事例的原因、指出其危害的同时,阐述了观察和实验必须具备的精神和态度,强调要亲自去观察、实验,收集事例。第7段对重理论轻事例的错误倾向提出批评,引用了饶裕泰教授的话作为论据,切合实际,富于针对性。第8段运用“有限与无眼”的故事和叶斯丕森的例子阐述观察、实验“不容易”的一个原因,指出观察、实验不能懒惰,必须具备换而不舍的精神。第9段阐述了观察、实验“不容易”的另一个原因,指出观察、实验不能有成见,必须有客观的态度。第10段收束上文,进一步指出不愿观察实验的害处。第11段指出观察、实验必须自己去做,彻底堵住了不愿观察、实验者的退路。这一部分是第二部分论述的具体化和深化。

四、.总结全文:

文章紧紧围绕治学过程中“虚与实”也就是理论和事例的关系问题,运用大量典型、生动的事实和理论材料,进行了全面透彻的论述。明确提出理论从事例中来,事例则从观察和实验中来的观点。文章针对重理论轻事例的现实,在辩证立论、全面论述的基础上,强调突出了观察、实验对理论形成的作用这一重点。全文第一部分提出两者关系的问题,表明观点;第二部分紧紧围绕观点,对两者关系展开论述;第三部分在论述两者关系的基础上,进一步阐述观察和实验的有关问题,从整体到局部,逐步剖析,层层深人,不断具体、深化,具有严密的逻辑性和较强的说服力。

高一函数课件(篇14)

一、说教材

(一)地位与重要性

函数的最值是《高中数学》一年级第一学期的内容,是函数基本性质的重要部分。在实际问题的解决过程中,建立了变量间的函数关系后,求最值培养了学生运用基础理论研究具体问题的能力,这也是学习数学的目的之一。函数最值的教学在培养学生数形结合、化归的数学思想同时也可以使学生养成严谨思维的学习习惯。函数的思想是一种重要的数学思想,它体现了运动变化和对立统一的观点,本节课对初高中知识的衔接起到了承上启下的作用。函数的最值问题与不等式、方程、参数范围的探求及解析几何等知识综合在一起往往能编拟综合性较强的新型题目,可以综合考查学生应用函数知识分析解决问题的能力,从而成为高考的高档解答题,是高考测试的热点之一。

(二)教学目标

知识与能力目标:掌握求二次函数最值的常用方法——配方法,培养学生数形结合、化归的数学思想和运用基础理论研究解决具体问题的能力。

情感目标:经历和体验数学活动的过程以及数学在现实生活中的作用,激发学生学习数学知识的积极性,树立学好数学的信心。

过程目标:通过课堂学习活动培养学生相互间的合作交流,且在相互交流的过程中养成学生表述、抽象、总结的思维习惯,进而获得成功的体验。

科研目标:在教师指导下学生经历和体验探究过程的方法。

(三)教学重难点

重点:配方法、数形结合求二次函数的最值。

难点:二次函数在闭区间上的最值。

二、说教法与学法

在初中学生已经学习过二次函数的知识,根据本节课的内容和学生的实际水平,本节课主要采用探究式教学法和讲练结合法进行教学。教学过程也是一个学生主动建构的过程,教师不能无视学生已有的经验,企图从外部将新知识强行装入学生的头脑,而是要把学生现有的知识经验作为新知识的生长点,引导学生从原有的知识经验中“生长”及发现新的知识经验。在本堂课学习中,学生发挥主体作用,主动地思考探究求解最值的最优策略,并归纳出自己的解题方法,将知识主动纳入已建构好的知识体系,真正做到“学会学习”。

三、说教学过程

(一)课题引入

环节

教学过程

设计说明

课题讲解

例:动物园要建造一面靠墙的2间面积相同的长方形熊猫居室,如果可供建造围墙的材料长是30米,那么宽为多少米时才能使所建造的熊猫居室面积最大?熊猫居室的最大面积是多少平方米?

学生通过此例感受到在实际问题中需要解决函数的最值问题,从而引发学习本节内容的兴趣。

教学手段:用PPT展示题目

教师引导学生讨论解答,并个别答疑、点拨,收集学生的解法,挑出若干答案在实物投影仪上进行展示,并进行点评。

学生的解法主要为函数最值法和利用基本不等式求最值,由学生评价两种方法,为闭区间上二次函数的最值教学打下伏笔

教学手段:实物投影仪

(二)新知教学

环节

教学过程

设计说明

课题讲解

一、函数最大值和最小值的概念

通过引例最值的求解,引导学生阐述函数最大值和最小值的概念。

学生口述师板书。

一般地,设函数在处的函数值是.如果对于定义域内任意,不等式都成立,那么叫做函数的最小值,记作;如果对于定义域内任意,不等式都成立,那么叫做函数的最大值记作。

二、例题讲练

例1、求二次函数的最大值或者最小值:

师生共同完成一例,高一学生要养成规范的书写格式和习惯,其余题目请学生板演。

学生根据已有的能力和经验,动手得出答案,教师点评。提醒注意当取何值时,函数取到最值。

培养学生阐述、分析、理解概念的能力,引入最大值概念的过程是遵循由已知去认识未知的认识规律进行设计的,现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。让学生从求实际问题的最大值入手,由熟悉的二次函数图象的顶点所具有的特点出发,得到求二次函数最大值(最小值)的方法。

突出学生的主体地位,发挥教师的主导作用,培养思维的严谨性以及转化能力,通过区间的变化让学生充分感受到二次函数的最值的求解要讨论对称轴与所给区间的关系。

教学方式:讲练结合

例2、在的条件下,求函数的最大值和最小值。

教师引导学生逐步深入思考:

1、定义域与函数最值是什么关系?

2、转化后要研究的函数是什么?

教学方式:学生自主探究

dg15.com小编推荐

高一函数课件六篇


每个老师在上课前需要制定教案和准备课件,现在是老师开始写教案和制作课件的时候了。为了实现预定的教学目标,我们应该从哪些角度来编写教案和制作课件呢?为了帮助您思考并做出好的决策,工作总结之家的编辑在网络上搜索了与“高一函数课件”相关的文章,希望我们的建议能对您有所帮助!

高一函数课件【篇1】

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

作者通过祥林嫂在鲁家生活的情况,写出了她的争扎与反抗。

③祥林嫂在鲁家的生活是极其悲惨的:为什么说她反满足?

她希望凭借辛勤的劳动来换取起码的生活,寻求一条活路。这就鲜明地揭示出她勤劳、善良、质朴、顽强的性格,以及在生活道路上的争扎。

然而,勤劳、善良的祥林嫂想通过加倍的劳动来摆脱悲惨的命运的愿望,很快破灭了。她在鲁家做工只三个半月,由于鲁四老爷的支持(P:既然她的婆婆要她回去可说呢),被她婆婆像捆牲口一样,捆了躺在船板上,被抢了回去,封建的族权再次向她伸出了魔掌。

2.发展:

祥林嫂被迫改嫁到深山野是故事情节的发展。在这一部分中,哪些地方写出了封建宗法制度对祥林嫂的迫害而显示出了这种迫害是很残酷的呢?

高一函数课件【篇2】

同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

那么,祥林嫂是如何对待新迫害的呢?

3.高潮:

①祥林嫂为什么又一次来到鲁四老爷家?

②有人认为,丧夫失子有偶然性,这种看法对不对?

丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更大的打击。

③在鲁四老爷,人们对待祥林嫂这个嫁而再寡的不幸女人态度如何?

A.鲁四老爷的态度:

鲁四老爷站在顽固维护封建宗法制度的立场上,从精神上残酷地虐杀她。他暗暗地告诫四婶的那段话,就是置祥林嫂于死地而又不露一丝血痕的软刀子。(通过四婶先后喊出三句你放着罢,杀人不见血地葬送了祥林嫂的性命。)

B.人们的态度:

人们叫她的声调和先前很不同。

鲁迅用他那犀利的笔锋,从广阔的领域里揭示了封建社会黑暗的程度。

人们对祥林嫂的态度,使她感到痛苦与迷惑。她不时地向人们诉说着自己不幸的遭遇,她的精神却惨遭蹂躏。而柳妈的说鬼又给祥林嫂新的打击。

C.柳妈说鬼:

④祥林嫂是如何对待这如此沉重的打击的?其结果如何?

为了争得做人的权利,为了求得一线生存的希望,她在竭尽全力地反抗着:

她背着沉重的精神包袱,整日劳碌着,以便积够十二元鹰洋,用捐门槛的方法去摆脱人们在阳世、阴世间给她设下的罪名,她忍受着咬啮人心的嘲笑和侮辱,在无边的寂寞和悲哀中,默默干了一年,这是何等坚韧的反抗精神啊!

而反抗的结果,出乎柳妈、祥林嫂的预想,这血淋淋的事实深刻地说明了:祥林嫂是无法赎罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.结局:

当祥林嫂被折磨得像木偶人,丧失了当牛做马的条件后,鲁四老爷就一脚把她踢出门外,使她终于成了只有那眼珠间或一轮,还可以表示她是一个活物的僵尸。即使这样,她在临死前,还向我提出了三个问题:

A.一个人死了之后,究竟有没有魂灵的?

B.那么,也就有地狱了?

C.那么,死掉的一家的人,都能见面的?

这是对魂灵的有无表示疑惑。

她希望人死后有灵魂,因为她想看见自己的儿子;她害怕人死后有灵魂,因为她害怕在阴间被锯成两半。这种疑惑是她对自己命运的疑惑,但也正是这种疑惑,这种无法解脱的矛盾,使她在临死前受到了极大的精神折磨,最后,悲惨地死去。

从祥林嫂一生的悲惨遭遇中,可以清楚地看到,封建的宗法制度正是用政权、族权、神权、夫权这四条绳索把祥林嫂活活地勒死的。

祥林嫂一生的悲惨遭遇,正是旧中国千百万劳动妇女悲惨遭遇的真实写照。作者正是通过塑造祥林嫂这一典型人物,对吃人的封建制度和封建礼教进行深刻的揭露和有力地抨击的。

小结:

祥林嫂是生活在旧中国的一个被践踏、被愚弄、被迫害、被鄙视的勤劳、善良、质朴、顽强的劳动妇女的典型形象。

总之,祥林嫂的悲剧是一个社会悲剧,造成这一悲剧的根源是封建礼教对中国劳动妇女的摧残和封建思想对当时中国社会的根深蒂固的统治。

第三课时

本课时重点分析鲁四老爷、我和柳妈的形象。

一、检查作业:

二、分析鲁四老爷:

鲁四老爷是当时农村中地主阶级的代表人物,是资产阶级民主革命时期地主阶级知识分子的典型形象。他政治上迂腐、保守,顽固地维护旧有的封建制度,反对一切改革与革命。他思想上反动,尊崇理学和孔孟之道。自觉维护封建制度和封建礼教。他是造成祥林嫂悲剧的一个重要人物。

1.作者是通过什么手法来刻画这个人物的呢?

①间接描写:

通过鲁四老爷的书房陈设的描写,点明了鲁四老爷的身分(地主阶级、封建理学的卫道士),揭露了他的丑恶本质,从而揭示出他成为杀害祥林嫂的刽子手的深刻的阶级根源和思想根源。

②直接描写:

A.行动描写:

这表现在祥林嫂被抢走的两件事上:

当婆婆一边抢人一边来领工钱时,鲁四老爷把祥林嫂一文还没有的工钱全交给了婆婆。

与此相对照的是对被压迫的寡妇祥林嫂的冷酷无情。

祥林嫂曾那样辛勤地为鲁家劳动过,可当她遭到恶运时,鲁家却无动于衷,连祥林嫂走没走、怎么走的,都毫不过问,只是到了正午,四婶肚子饿了,这才想起了祥林嫂淘米时拿走米和淘箩,于是倾巢出动分头寻淘箩;连平时摆派头、端架子的鲁四老爷都踱出门外,直到河边,等看见米和淘箩平平正正的放在岸上,旁边还有一株菜时,这才放心。这场虚惊,入木三分地揭露了:在封建统治者的眼里,一个劳动妇女的命运都不如一个淘箩、一点米、一株菜,鲁四老爷冷酷残忍的嘴脸跃然纸上。

B.语言描写:

在祥林嫂的问题上,鲁四老爷一共开过六次口,说了百十来个字,却就把他反动、顽固、虚伪自私、阴险狠毒的性格特征,把他杀害祥林嫂的罪行,揭露得淋漓尽致。

a.祥林嫂被抢前:

b.祥林嫂被抢时:

c.当他为寻淘箩,踱到河边时:

d.紧接着,午饭之后,卫婆子又来时:

e.对四婶的暗暗告诫:

f.祥林嫂死后:

作为这六次开口背景的是鲁四老爷虚伪寒暄后的大骂其新党,它恰恰深刻地揭示了那六次开口的根源。

三、分析我这一形象:

小说中的我是一个具有进步思想的小资产阶级知识分子的形象。我有反封建的思想倾向,憎恶鲁四老爷,同情祥林嫂。对祥林嫂提出的魂灵的有无的问题,之所以作了含糊的回答,有其善良的一面;同时也反映了我的软弱和无能。

在小说的结构上,我又起着线索的作用。祥林嫂一生的悲惨遭遇都是通过我的所见所闻来展现的。我是事件的见证人。

四、分析柳妈:

问:有人认为柳妈是帮助鲁四老爷杀害祥林嫂的凶手。你是怎样来看待这一问题呢?

明确:柳妈和祥林嫂一样都是旧社会的受害者。虽然她脸上已经打皱,眼睛已经干枯,可是在年节时还要给地主去帮工,可见,她也是一个受压迫的劳动妇女。但是,由于她受封建迷信思想和封建礼教的毒害很深,相信天堂、地狱之类邪说和饿死事小,失节事大的理学信条,所以她对祥林嫂改嫁时头上留下的伤疤,采取奚落的态度。至于她讲阴司故事给祥林嫂听,也完全出于善意,主观愿望还是想为祥林嫂寻求赎罪的办法,救她跳出苦海,并非要置祥林嫂于死地,只是结果适得其反。

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

高一函数课件【篇3】

一考纲要求。

1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

二.高考趋势。

函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。

三.要点回顾

解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。

四.基础训练。

1.在一定的范围内,某种产品的购买量吨与单价元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨700元,那么客户购买400吨,单价应该是

2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.

3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润L元与每件产品的售价的函数关系式为.

4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。

5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。

可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。

6.在边长为4的正方形ABCD的边上有一点p沿着折线BCDA,由B点(起点)向A点(终点)移动,设p点移动的路程为,的面积与点p移动的路程间的函数关系式为

五.例题精讲。

例1.某村计划建造一个室内面积为800的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积?种植面积是多少?

例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。

1当每辆车的月租金定为3600元时,能租出多少辆车?

2当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?

例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题

1写出城市人口总数(万人)与年份(年)的函数关系式

2计算xx以后该城市人口总数(精确到0.1万人)

3计算大约多少年以后该城市人口将达到120万人(精确到1年)

六.巩固练习:.

1.铁路机车运行1小时所需的成本由两部分组成:固定部分元,变动部分(元)与运行速度(千米/小时)的平方成正比,比例系数为,如果机车匀速从甲站开往乙站,甲,乙两站间的距离为500千米,则机车从甲站运行到乙站的总成本与机车的速度之间的函数关系为

2.某公司有60万元资金,计划投资甲,乙两个项目,按要求,对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不少于5万元,对项目甲投资1万元可获得0.4万元的利润,对项目乙投资1万元可获得0.6万元的利润,该公司正确规划后,在这两个项目上共可获得的利润为

3.将进货单价为80元的商品按90元一个出售时,能卖出400个,已知该商品每个上涨1元,其销售量就减少20个,为获得利润,售价应定为

4.某地每年消耗木材约20万立方米,没立方米木料价格为240元,为了减少木材消耗,决定按木料价格的%征收木材税,这样每年木材消耗量减少万立方米,为了既减少木材消耗又保证税金收入每年不少于90万元,则的取值范围为

5.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过年后的剩留质量为,则与之间的函数关系为

6.某公司一年共购买某种货物400吨,每次购买吨,运费为4万元/吨,一年总储存费用4万元,要使一年的总运费与总储存费用之和最小,则=

7.用总长为14.8的钢条做一个长方体容器的框架,如果所做容器有一边比另一边长0.5,则它的容积为

8.某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元),问该产品每月生产吨才能使利润达到,利润是万元

9.有甲,乙两种产品经营销售这两种商品所获得的利润依次是和(万元)它们与投入的资金(万元)的关系,有经验公式,。今有3万元资金投入经营甲、乙两种商品,为了获得利润,对甲、乙两种商品的资金投入分别应是多少?最多能获得多大的利润?

高一函数课件【篇4】

1.2解三角形应用举例第二课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

二、教学重点、难点

重点:结合实际测量工具,解决生活中的测量高度问题

难点:能观察较复杂的图形,从中找到解决问题的关键条件

三、教学过程

Ⅰ.课题导入

提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

Ⅱ.讲授新课

[范例讲解]

例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。

解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)

师:根据已知条件,大家能设计出解题方案吗?

若在ABD中求CD,则关键需要求出哪条边呢?

生:需求出BD边。

师:那如何求BD边呢?

生:可首先求出AB边,再根据BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根据正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

将测量数据代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度约为150米.

思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?(BC边)

解:在ABC中,A=15,C=25-15=10,根据正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度约为1047米

Ⅲ.课堂练习:课本第17页练习第1、2、3题

Ⅳ.课时小结

利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化。

Ⅴ.课后作业

作业:《习案》作业五

高一数学教案:《函数》教学设计

高一数学教案:《函数》教学设计

教学目标

1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.

(1)了解函数是特殊的映射,是非空数集A到非空数集B的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.

(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.

(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.

2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.

学过什么函数?

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

学生举出如等,待学生说完定义后教师打出投影片,给出定义之后教师也举一个例子,问学生.

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

教师由此指出我们争论的焦点,其实就是函数定义的不完善的地方,这也正是我们今天研究函数定义的必要性,新的定义将在与原定义不相违背的基础上从更高的观点,将它完善与深化.

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

学生的回答往往是把书上的定义念一遍,教师可以板书的形式写出定义,但还要引导形式发现定义的本质.

(板书)2.2函数

一、函数的概念

高一函数课件【篇5】

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

高一函数课件【篇6】

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

鲁迅作品的抛锚式教学初探

黄晓莉

抛锚式教学(AnchoredInstruction)模式是建立在建构主义学习理论下的一种重要的教学模式。建构主义学习理论认为,学习过程不是学习者被动地接受知识,而是积极地建构知识的过程。建构主义学习活动强调以学习者为中心,引发学习者的学习兴趣和动机,促使他们进行真实的学习。所谓抛锚式教学,是要求教学建立在有感染力的真实事件或真实问题的基础上,通过学生间的互动、交流,凭借学生的主动学习、生成学习,亲身体验从识别目标、提出目标到达到目标的全过程。这类真实事例或问题就作为锚,而建立和确定这些事件或问题就可形象地比喻为抛锚。一旦这类事件或问题被确定了,整个学习内容和学习进程也就像轮船被锚固定一样而被确定了。

在中学语文教材中,鲁迅的作品占有非常重要的地位。回顾语文教材编选鲁迅作品的历史,可以清楚地看出,近80年来,特别是五四运动之后,不论中国社会的政治和经济形势发生了多么深刻的变化,也不论人们的思想观念和价值取向表现出怎样多元化的倾向,中学语文教材中鲁迅作品的地位越来越重要,其作品数量也渐为古今中外名家之首。但由于鲁迅的作品既富于思想深度,又比较重视行文的技巧,在实际教学过程中,教师们普遍认为鲁迅的文章往往比较难教,学生则觉得较难理解。而运用抛锚式教学,则可以有效地解决这个问题。

一、鲁迅作品的思想内涵和语言艺术特点

鲁迅小说及其它作品,是思想内容和艺术形式的完美的统一体。对鲁迅作品的理解,很大程度上取决于对其作品的思想性和文法特点的理解和把握。

(一)鲁迅作品的思想内涵

鲁迅作品有着深刻的思想内涵。其具体表现在:

1.对传统文化的反省

鲁迅是第一个告别传统文化的文人。他超越了历史和价值,超越了感情与理智,对传统文化思想进了整体反省。比如,鲁迅的小说集中地、真实地反映了传统文化的背景下的中国近代农村的社会现实,在其小说的宁静、平淡中透露出遮掩不住的沉闷和令人窒息的气息。

2.重视人文性与思想性

没有人文背景的文章,在鲁迅的作品里几乎是没有的。鲁迅在传统文化的广阔背景之上,表现了社会的变迁,意识的骚动与沉寂,人物的喜怒哀乐、悲欢离合。作者深深地切入传统文化稳定结构的内核,探究人物活动的内在因素,揭示传统文化下人物、社会、历史的必然。

3.强烈的时代责任感和社会责任感

鲁迅的许多作品,表现了他强烈的时代责任感和社会责任感。他揭露反动军阀的凶残卑劣及其走狗文人的阴险无耻,激励人们继续战斗。这是鲁迅先生一贯精神的表露。

(二)鲁迅作品的语言艺术特点

鲁迅的许多作品用笔深刻冷隽,句法简洁生动,体裁新颖独创,堪称是语言艺术的典范。

1.娴熟的文法

鲁迅的小说已形成了他的风格。他比较喜欢用倒叙的方法,常以此切入正题。这种方法完全打破了传统章回小说的老套路,避免了小说叙事中的拖沓与冗长,而直接把读者引入了作者的叙述空间,更便于作品主题思想的揭露。

2.细腻的描写和合理的剪裁

鲁迅作品的叙述极有条理,凡与主题无关的内容他绝不提及,但又十分注意使主题在含蕴百迭中得到升华。但凡文中的故事,一定是很完整的,其细节的刻划也非常细腻。比如:阿Q干什么活,祥林嫂怎么死的,孔乙己如何隐身而亡,迅哥儿的故乡又是如何变化的等等,没有不认真雕凿的。

3.体裁的多样性与灵活性

鲁迅在文艺创新中,作过了各种尝试:超现实主义的日记形式(《狂人日记》)、象征主义(《药》)、简短复述(《一件小事》)、持续独白(《头发的故事》)、集体的讽刺(《风波》)、自传体小说(《故乡》)、谐谑史诗(《阿Q正传》)、反讽(《伤逝》)等等,围绕叙述这个核心表现出了高度灵活性,充分体现了文学大师熟稔的写作技巧。

4.追求简洁生动的文字效果

鲁迅作品的遣词造句与众不同,用字造句都经过深思熟虑、千锤百炼,这正是他的作品具有深厚的吸引力的一个重要原因。这里既有鲁迅字斟句酌的文字运用的态度问题,也有他对文字表达的刻意追求。例如,他最恨的是那些以道学先生自命的人,所以他描写脑筋简单的乡下人时用笔比较宽容;但一写到《阿Q正传》里的赵太爷、《祝福》里的鲁四老爷等等,便针针见血,丝毫不肯容情了。他写《阿Q正传》看起来是为了痛陈阿Q这类人,想淋漓尽致地将他的丑态形容一下。然而在读到阿Q被枪毙这段情节时,我们就能从字里行间里觉得真正可恶的还是那些赵太爷、钱举人、把总老爷这些土豪劣绅,阿Q不过做了他们的牺牲品罢了。

二、鲁迅作品教学中的抛锚式教学策略

上文谈到,鲁迅的作品由于其独有的特点,使得其教学有一定的难度。如何以学生为主体,以教师为主导,把一篇难度较大的文章化繁为简传输给学生,使他们既能接受到语言的能力训练,又能使其从中感受到文学作品的艺术魅力,这确实需要我们进行多方面的思考。在教学中,我发现抛锚式教学是一个比较好的策略。其主要的方法,就是从组织有感染力的真实事件或真实问题入手来展开教学,鼓励学生自主学习和协作学习,并在此过程中寻求对作品的理解。

高一函数课件6篇


每位教师都需要编写教案和课件,以确保教学过程效果更佳。在编写教案时,必须考虑如何设计知识点,这有助于教师更好地掌握教学进度。为了帮助教师更好地应对这个问题,工作总结之家的编辑为您整合了多篇有关“高一函数课件”的文章,并希望本页的内容能对您有所帮助!

高一函数课件 篇1

一考纲要求。

1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

二.高考趋势。

函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。

三.要点回顾

解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。

四.基础训练。

1.在一定的范围内,某种产品的购买量吨与单价元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨700元,那么客户购买400吨,单价应该是

2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.

3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润L元与每件产品的售价的函数关系式为.

4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。

5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。

可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。

6.在边长为4的正方形ABCD的边上有一点p沿着折线BCDA,由B点(起点)向A点(终点)移动,设p点移动的路程为,的面积与点p移动的路程间的函数关系式为

五.例题精讲。

例1.某村计划建造一个室内面积为800的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积?种植面积是多少?

例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。

1当每辆车的月租金定为3600元时,能租出多少辆车?

2当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?

例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题

1写出城市人口总数(万人)与年份(年)的函数关系式

2计算xx以后该城市人口总数(精确到0.1万人)

3计算大约多少年以后该城市人口将达到120万人(精确到1年)

六.巩固练习:.

1.铁路机车运行1小时所需的成本由两部分组成:固定部分元,变动部分(元)与运行速度(千米/小时)的平方成正比,比例系数为,如果机车匀速从甲站开往乙站,甲,乙两站间的距离为500千米,则机车从甲站运行到乙站的总成本与机车的速度之间的函数关系为

2.某公司有60万元资金,计划投资甲,乙两个项目,按要求,对项目甲的投资不小于对项目乙投资的倍,且对每个项目的投资不少于5万元,对项目甲投资1万元可获得0.4万元的利润,对项目乙投资1万元可获得0.6万元的利润,该公司正确规划后,在这两个项目上共可获得的利润为

3.将进货单价为80元的商品按90元一个出售时,能卖出400个,已知该商品每个上涨1元,其销售量就减少20个,为获得利润,售价应定为

4.某地每年消耗木材约20万立方米,没立方米木料价格为240元,为了减少木材消耗,决定按木料价格的%征收木材税,这样每年木材消耗量减少万立方米,为了既减少木材消耗又保证税金收入每年不少于90万元,则的取值范围为

5.已知镭经过100年剩留原来质量的95.76%,设质量为1的镭经过年后的剩留质量为,则与之间的函数关系为

6.某公司一年共购买某种货物400吨,每次购买吨,运费为4万元/吨,一年总储存费用4万元,要使一年的总运费与总储存费用之和最小,则=

7.用总长为14.8的钢条做一个长方体容器的框架,如果所做容器有一边比另一边长0.5,则它的容积为

8.某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格(元/吨)之间的关系式为:,且生产吨的成本为(元),问该产品每月生产吨才能使利润达到,利润是万元

9.有甲,乙两种产品经营销售这两种商品所获得的利润依次是和(万元)它们与投入的资金(万元)的关系,有经验公式,。今有3万元资金投入经营甲、乙两种商品,为了获得利润,对甲、乙两种商品的资金投入分别应是多少?最多能获得多大的利润?

高一函数课件 篇2

高一数学教案:《函数的应用举例》教学设计

教学目标

1.能够运用函数的性质,指数函数,对数函数的性质解决某些简单的实际问题.

(1)能通过阅读理解读懂题目中文字叙述所反映的实际背景,领悟其中的数学本,弄清题中出现的量及其数学含义.

(2)能根据实际问题的具体背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题.

(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题.

2.通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生分析问题,解决问题的能力和运用数学的意识,也体现了函数知识的应用价值,也渗透了训练的价值.

3.通过对实际问题的研究解决,渗透了数学建模的思想.提高了学生学习数学的兴趣,使学生对函数思想等有了进一步的了解.

教学建议

教材分析

(1)本小节内容是全章知识的综合应用.这一节的出现体现了强化应用意识的要求,让学生能把数学知识应用到生产,生活的实际中去,形成应用数学的意识.所以培养学生分析解决问题的能力和运用数学的意识是本小节的重点,根据实际问题建立数学模型是本小节的难点.

(2)在解决实际问题过程中常用到函数的知识有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质.在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法..事业本节的学习,既是对知识的复习,也是对方法和思想的再认识.

教法建议

(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多.事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特别是对实际问题中数学变量的隐含限制条件的提取尤为重要.

(2)对于应用问题的处理,第二步应根据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最后是用数学方法将其化为常规的函数问题(或其它数学问题)解决.此类题目一般都是分为这样三步进行.

(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题.在选题时应以以上几方面问题为主.

教学设计示例

函数初步应用

教学目标

1.能够运用常见函数的性质及平面几何有关知识解决某些简单的实际问题.

2.通过对实际问题的研究,培养学生分析问题,解决问题的能力

3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的意识,及学习数学的兴趣.

教学重点,难点

重点是应用问题的阅读分析和解决.

难点是根据实际问题建立相应的数学模型

教学方法

师生互动式

教学用具

投影仪

教学过程

一.提出问题

让学生明确是分段函数的前提条件下,求出定义域为.(板书)

问题解决后可由教师简单小结一下研究过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题.

下面我们一起看第二个问题

问题二:某工厂制定了从1999年底开始到20xx年底期间的生产总值持续增长的两个三年计划,预计生产总值年平均增长率为,则第二个三年计划生产总值与第一个三年计划生

相关阅读

1.2解三角形应用举例第三课时

一、教学目标

1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题

2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。

3、培养学生提出问题、正确分析问题、独立解决问题的能力,并激发学生的探索精神。

二、教学重点、难点

重点:能根据正弦定理、余弦定理的特点找到已知条件和所求角的关系

难点:灵活运用正弦定理和余弦定理解关于角度的问题

三、教学过程

Ⅰ.课题导入

[创设情境]

提问:前面我们学习了如何测量距离和高度,这些实际上都可转化已知三角形的一些边和角求其余边的问题。然而在实际的航海生活中,人们又会遇到新的问题,在浩瀚无垠的海面上如何确保轮船不迷失方向,保持一定的航速和航向呢?今天我们接着探讨这方面的测量问题。

Ⅱ.讲授新课

[范例讲解]

例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0nmile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01nmile)

学生看图思考并讲述解题思路

分析:首先根据三角形的内角和定理求出AC边所对的角ABC,即可用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角CAB。

解:在ABC中,ABC=180-75+32=137,根据余弦定理,

AC==≈113.15

根据正弦定理,=sinCAB==≈0.3255,

所以CAB=19.0,75-CAB=56.0

答:此船应该沿北偏东56.1的方向航行,需要航行113.15nmile

例2、在某点B处测得建筑物AE的顶端A的仰角为,沿BE方向前进30m,至点C处测得顶端A的仰角为2,再继续前进10m至D点,测得顶端A的仰角为4,求的大小和建筑物AE的高。

解法一:(用正弦定理求解)由已知可得在ACD中,

AC=BC=30,AD=DC=10,ADC=180-4,

=。因为sin4=2sin2cos2

cos2=,得2=30=15,在RtADE中,AE=ADsin60=15

答:所求角为15,建筑物高度为15m

解法二:(设方程来求解)设DE=x,AE=h

在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)

两式相减,得x=5,h=15在RtACE中,tan2==

2=30,=15

答:所求角为15,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

BAC=,CAD=2,AC=BC=30m,AD=CD=10m

在RtACE中,sin2=------①在RtADE中,sin4=,----②

②①得cos2=,2=30,=15,AE=ADsin60=15

答:所求角为15,建筑物高度为15m

例3、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

师:你能根据题意画出方位图?教师启发学生做图建立数学模型

分析:这道题的关键是计算出三角形的各边,即需要引入时间这个参变量。

解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x,AB=14x,AC=9,

ACB=+=

(14x)=9+(10x)-2910xcos

化简得32x-30x-27=0,即x=,或x=-(舍去)

所以BC=10x=15,AB=14x=21,

又因为sinBAC===

BAC=38,或BAC=141(钝角不合题意,舍去),

38+=83

答:巡逻艇应该沿北偏东83方向去追,经过1.4小时才追赶上该走私船.

评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解

Ⅲ.课堂练习

课本第16页练习

Ⅳ.课时小结

解三角形的应用题时,通常会遇到两种情况:

(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。

(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。

Ⅴ.课后作业

《习案》作业六

高一函数课件 篇3

高一数学指数函数教案:教学目标

1.使学生掌握指数函数的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如

的图象.

2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高一数学指数函数教案:教学建议

高一数学指数函数教案:教材分析

(1)指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

(2)本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数

时,函数值变化情况的区分.

(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

高一数学指数函数教案:教法建议

(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是

的样子,不能有一点差异,诸如

,

等都不是指数函数.

(2)对底数

的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

高一函数课件 篇4

教学目的:

1.训练按一定目的从课文中筛选信息的能力。

2.理解辩证立论,重点突出,广征博引,逐层深人的写法。

3.认识治学中占有材料与钻研理论的关系;树立实践第一的辩证唯物主义观点。

教学设想:

1.解读,关键要抓住“虚”与“实”的关系,理清课文的脉络,重点认识围绕基本观点立论辩证,广征博引、层层深人的论述特点,理清文章观点与材料之间的关系,把握课文的重点。

2.安排二课时。

教学过程及步骤:

一、开场白:

1980年10月22日,中国语言学会成立。吕叔湘先了题为《把我国语言科学推向前进》的讲话。全文分“中和外的关系”、“虚和实的关系”、“动和静的关系”、“通和专的关系”四个部分,分别论述了语言研究工作中需要处理好的四对关系。是其中的第二部分。题目是选作教材时编者加的。文章虽然“主要谈汉语研究”,但正如作者所言“在不同程度上也适用于其他方面”,对于一般治学和研究问题,对于中职学生的学习,包括.写作时处理好选材与立意的关系,都具有重要的指导意义。

二、作者简介:

吕叔湘(1904—1998),江苏丹阳人。当代著名语言学家、语文教育家,先后担任中国社会科学院语言研究所研究员、所长,兼任《中国语文》杂志主编,全国文字改革研究会主席,中国语言学会会长,语文出版社社长,并担任全国政协第二、三届委员,全国人大第三、四、五、六届代表,五届常委,法制委员会委员。他于1926年毕业于国立东南大学,曾任过中学教员。1936年留学英国,1938年回国。先后任云南大学文史系副教授、华西协和大学中国文化研究所研究员、金陵大学文化研究所研究员兼中央大学中文系教授、开明书店编辑。建国后任清华大学中文系教授,1952年到中国社会科学院语言研究所工作。他几十年来一直从事语文教学和研究,重点研究汉语语法,对我国语言学的发展作出了重要贡献。主要著作有《中国文法要略》、《语法修辞讲话》、《现代汉语八百词》等。他治学严谨,著述材料丰富,引证充分,阐述详尽,见解精辟。他还写有许多普及性语文读物,通俗实用,生动有趣。

三、分析课文:

全文共11段,可分为三个部分。

第一部分(第1~2段):系全文的总纲,提出论题并表明了观点:理论从事例中来,事例从观察中来、从实验中来。文章首句提出论题,紧接着以两个设问表明了观点。在接下来的阐述中,作者以语言学研究为例说明了理论来自于事例,事例来自于观察和实验的道理。文章的第2段运用古人做学问、国外各种学派林立和“禅宗和尚”的例子阐述对前人的理论也要靠观察来验证的道理。在论述中,作者既承认“前人的理论是我们的财富”,又指出“前人的理论无论多么重要”,都“要用自己的观察来验证”;既肯定了讲“家法”的好处,又指出其缺点,全面辩证,客观公允,令人信服。这一段是对第1段的进一步强调和补充。

第二部分(第3~6段):具体阐述理论和事实的辩证关系并指出了具体的处理方法。第3段从事实对理论的作用角度举出“反切”、“等韵”和“文字学”等理论的形成作为例证,指出事实能够决定理论。第4段从比较理论和事实轻重的角度,运用达尔文物种起源理论的形成和明朝两位理学家的故事作为论据,指出没有事实作基础,理论就靠不住,更加突出了事实对理论的决定性作用。第5段是从理论对事实的作用角度,肯定了理论能引导人去发现事实的作用。运用了门捷列夫元素周期表填写等例子。第6段具体提出处理二者关系的方法,特别强调“不可走极端”。这一部分的论述强调了事实对理论的决定性作用,其目的在于纠正现实中存在的重理论轻事实的认识。可贵的是作者“矫枉”而不“过正”,没有偏执一端,没有抹杀理论在治学中的作用,而是在轻重有别、详略有致、突出重点的同时,兼顾到了事物的各个方面,从而显得全面周到,辩证科学。作者对问题认识的深刻性和完整性由此可见一斑。

第三部分(第7~11段):着重论述观察和实验方面的有关问题。文章联系实际,在分析重理论轻事例的原因、指出其危害的同时,阐述了观察和实验必须具备的精神和态度,强调要亲自去观察、实验,收集事例。第7段对重理论轻事例的错误倾向提出批评,引用了饶裕泰教授的话作为论据,切合实际,富于针对性。第8段运用“有限与无眼”的故事和叶斯丕森的例子阐述观察、实验“不容易”的一个原因,指出观察、实验不能懒惰,必须具备换而不舍的精神。第9段阐述了观察、实验“不容易”的另一个原因,指出观察、实验不能有成见,必须有客观的态度。第10段收束上文,进一步指出不愿观察实验的害处。第11段指出观察、实验必须自己去做,彻底堵住了不愿观察、实验者的退路。这一部分是第二部分论述的具体化和深化。

四、.总结全文:

文章紧紧围绕治学过程中“虚与实”也就是理论和事例的关系问题,运用大量典型、生动的事实和理论材料,进行了全面透彻的论述。明确提出理论从事例中来,事例则从观察和实验中来的观点。文章针对重理论轻事例的现实,在辩证立论、全面论述的基础上,强调突出了观察、实验对理论形成的作用这一重点。全文第一部分提出两者关系的问题,表明观点;第二部分紧紧围绕观点,对两者关系展开论述;第三部分在论述两者关系的基础上,进一步阐述观察和实验的有关问题,从整体到局部,逐步剖析,层层深人,不断具体、深化,具有严密的逻辑性和较强的说服力。

高一函数课件 篇5

她的主观愿望和客观效果的矛盾说明柳妈是以剥削阶级统治人民的思想──封建礼教和封建迷信思想为指导,来寻求解救祥林嫂的药方的,这不但不会产生疗效的效果,反而给自己的姐妹造成了难以支持的精神重压,把祥林嫂推向更恐怖的深渊之中。

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

作者通过祥林嫂在鲁家生活的情况,写出了她的争扎与反抗。

③祥林嫂在鲁家的生活是极其悲惨的:为什么说她反满足?

她希望凭借辛勤的劳动来换取起码的生活,寻求一条活路。这就鲜明地揭示出她勤劳、善良、质朴、顽强的性格,以及在生活道路上的争扎。

然而,勤劳、善良的祥林嫂想通过加倍的劳动来摆脱悲惨的命运的愿望,很快破灭了。她在鲁家做工只三个半月,由于鲁四老爷的支持(P:既然她的婆婆要她回去可说呢),被她婆婆像捆牲口一样,捆了躺在船板上,被抢了回去,封建的族权再次向她伸出了魔掌。

2.发展:

祥林嫂被迫改嫁到深山野是故事情节的发展。在这一部分中,哪些地方写出了封建宗法制度对祥林嫂的迫害而显示出了这种迫害是很残酷的呢?

高一函数课件 篇6

教学目标

1.准确把握祥林嫂的形象特征,理解造成人物悲剧的社会根源,从而认识旧社会封建礼教的罪恶本质。

2.学习本文综合运用肖像描写、动作描写、语言描写等塑造人物的方法。

3.体会并理解本文环境描写的作用,理解本文倒叙手法的作用。

教学课时:四课时

教学步骤:

第一课时

本课时重点理清小说的情节结构,了解倒叙的作用。

一、导入新课:

我们在初中曾经学过鲁迅的小说《故乡》、《孔乙己》,其中由活泼可爱而变成麻木愚昧的闰土,站着喝酒而穿长衫的孔乙己,都给我们留下了深刻的印象。今天,我们学习的是鲁迅先生又一篇著名的小说《祝福》。

二、介绍背景:

《祝福》写于1924年2月7日,是鲁迅短篇小说集《彷徨》的第一篇,最初发表于1924年3月25日出版的上海《东方杂志》半月刊第二十一卷第6号上,后收入《鲁迅全集》第二卷。

鲁迅以极大的热情欢呼辛亥革命的爆发,可是不久就失望了。他看到辛亥革命以后,帝制政权虽被推翻,但代之而起的却是地主阶级的军阀官僚的统治,封建社会的基础并没有彻底摧毁,中国的广大人民,尤其是农民,日益贫困化,他们过着饥寒交迫的生活,宗法观念、封建礼教仍然是压在人民头上的精神枷锁。鲁迅在《祝福》里,深刻地展示了这一时期中国农村的真实面貌。

这一时期的鲁迅基本上还是一个革命民主主义者,还不可能用马克思主义来分析观察,有时就不免发生怀疑,感到失望。他把这一时期的小说集叫做《彷徨》,显然反映了其时自己忧愤的心情。但鲁迅毕竟是一个真的猛士,敢于直面惨淡的人生,敢于正视淋漓的鲜血,他决不会畏缩、退避,而是积极奋斗。

《祝福》这篇小说通过祥林嫂一生的悲惨遭遇,反映了辛亥革命以后中国的社会矛盾,深刻地揭露了地主阶级对劳动妇女的摧残与迫害,揭示了封建礼教吃人的本质,指出彻底反封建的必要性。

三、研习课文:

1、自读预习提示,了解小说的教学重点,明确教学目标。

2、理清情节,了解倒叙的作用。

3、速读课文,概括各段内容。

提问:这篇小说是按时间顺序叙述,还是另有安排?

明确:本文在序幕以后就写出了故事的结局,这是采取了倒叙的手法。

提问:在结构上采取倒叙手法有什么作用?

讨论归纳:

设置悬念,使读者急于追根溯源探求原委;写祥林嫂在富人们一片祝福中死去,造成了浓重的悲剧气氛,而且死后引起了鲁四老爷的震怒,揭示了祥林嫂与鲁四老爷之间的尖锐的矛盾,突出了小说反封建的主题。

第二课时

本课时重点分析祥林嫂形象。

一、回顾小说的三要素:

情节、人物、环境(社会环境、自然环境)

二、分析祥林嫂形象:

小说的主题是靠人物形象来体现的。这一课的主人公就是祥林嫂。我们只有弄清楚祥林嫂的性格和命运,才能懂得《祝福》的主题。而作为人物形象又是通过故事情节──人和人之间的联系或冲突表现出来的。那么,祥林嫂究竟是一个什么样的人呢?我们就先来分析一下故事情节的开端、发展、高潮、结局,由此来把握祥林嫂的形象,领会《祝福》的主题。

1.开端:

①祥林嫂为什么要到鲁家做工?

小说的一开始,祥林嫂就是封建的宗法制度的牺牲品。因为正是父母之命,媒妁之言,迫使她嫁给一个比她小十岁的丈夫,而丈夫又过早地丧了命。祥林嫂因此陷入了嫁而守寡的悲惨的命运之中。按理说,年纪大约二十六七的祥林嫂是完全可以用自己的劳动在农村生活下去的,可是她家里还有严厉的婆婆,于是祥林嫂才被迫逃到鲁四老爷家里。

②祥林嫂是怎样对待使她嫁而守寡、备受虐待的宗法制度的呢?

对数函数课件锦集十四篇


本文的主要目的是整理一篇关于“对数函数课件”的文章。在开学之前,老师们需要准备好他们的教案课件,每个人都需要制定自己的教案课件计划。教师编写教案的态度反映了他们对教学质量的认真负责。如果你觉得这个建议很有用,请分享给你的朋友和家人!

对数函数课件【篇1】

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1) 知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题.

(2) 能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力.

(3) 情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数学的精确和美妙之处,调动学生学习数学的积极性.

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.

2、教学手段:

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,使问题得以圆满解决.

对数函数课件【篇2】

同情他的人,也把他推向深渊,这更显示出悲剧的可悲。柳妈正是这样一个同情祥林嫂而又给她痛苦的人。

第四课时

本课时重点分析写作特点。

一、检查作业:

二、分析、讨论写作特点:

1.精当的环境描写。

作者巧妙地把祥林嫂悲剧性格上的几次重大变化,都集中在鲁镇祝福的特定的环境里,三次有关祝福的描写,不但表现了祥林嫂悲剧的典型环境,而且也印下祥林嫂悲惨一生的足迹。

①第一次是描写镇上各家准备祝福的情景。

祝福是鲁镇年终的大典,富人们要在这一天迎接福神,拜求来年一年的好运气,以便继续他们贪得无厌的幸福生活,而制作福礼却要像祥林嫂一样的女人臂膊在水里浸得通红,没日没夜地付出自己的艰辛,可见富人们所祈求的幸福,是建立在榨取这些廉价奴隶的血汗之上的。这样通过环境描写就揭露了人与人之间的矛盾冲突,预示了祥林嫂悲剧的社会性。同时,通过年年如此,家家如此,今年自然也如此的描写,也显示了辛亥革命以后中国农村的状况:阶级关系依旧,风俗习惯依旧;人们的思想意识依旧。一句话,封建势力和封建迷信思想对农村的统治依旧。这样,通过环境描写,就揭示出祥林嫂悲剧的社会根源,预示了祥林嫂悲剧的必然性。

②第二次是对鲁四老爷家祝福的描写。

祝福本身就是旧社会最富有特色的封建迷信活动,所以在祝福时封建宗法思想和反动的理学观念也表现得最为强烈,在鲁四老爷不准败坏风俗的祥林嫂沾手的告诫下,祥林嫂失去了祝福的权力。她为了求取这点权力,用历来积存的工钱捐了一条赎罪的门槛,但所得到的仍是你放着罢,祥林嫂。这样一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切挣扎的希望都在这一句喝令中破灭了。就这样,鲁四老爷在祝福的时刻凭着封建宗法思想和封建礼教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的环境描写,推动了情节的发展,同时也增加了人物形象的真实感与感染力。

③第三次是结尾通过我的感受对祝福景象的描写。

祥林嫂死的惨象和天地圣众预备给鲁镇的人们以无限的幸福的气氛,形成鲜明的对照,深化了对旧社会杀人本质的揭露,同时在布局上也起到了首尾呼应,使小说结构更臻完善的作用。

2.富有特色的人物刻画:

①肖像描写:

三次变化:

②画眼睛(眼神):

3.倒叙的手法:

三、小结:

以《祝福》为题的意义:

1.小说起于祝福,结于祝福,中间一再写到祝福,情节的发展与祝福有着密切的关系。

2.封建势力通过祝福杀害了祥林嫂,祥林嫂又死于天地圣众预备给鲁镇的人们以无限的幸福的祝福声中。通过这个标题,就把凶人的愚顽的欢呼和悲惨的弱者的不幸,鲜明地摆到读者的面前,形成强烈的对比,在表现主题方面更增强了祥林嫂遭遇的悲剧性。

鲁迅作品的抛锚式教学初探

黄晓莉

抛锚式教学(AnchoredInstruction)模式是建立在建构主义学习理论下的一种重要的教学模式。建构主义学习理论认为,学习过程不是学习者被动地接受知识,而是积极地建构知识的过程。建构主义学习活动强调以学习者为中心,引发学习者的学习兴趣和动机,促使他们进行真实的学习。所谓抛锚式教学,是要求教学建立在有感染力的真实事件或真实问题的基础上,通过学生间的互动、交流,凭借学生的主动学习、生成学习,亲身体验从识别目标、提出目标到达到目标的全过程。这类真实事例或问题就作为锚,而建立和确定这些事件或问题就可形象地比喻为抛锚。一旦这类事件或问题被确定了,整个学习内容和学习进程也就像轮船被锚固定一样而被确定了。

在中学语文教材中,鲁迅的作品占有非常重要的地位。回顾语文教材编选鲁迅作品的历史,可以清楚地看出,近80年来,特别是五四运动之后,不论中国社会的政治和经济形势发生了多么深刻的变化,也不论人们的思想观念和价值取向表现出怎样多元化的倾向,中学语文教材中鲁迅作品的地位越来越重要,其作品数量也渐为古今中外名家之首。但由于鲁迅的作品既富于思想深度,又比较重视行文的技巧,在实际教学过程中,教师们普遍认为鲁迅的文章往往比较难教,学生则觉得较难理解。而运用抛锚式教学,则可以有效地解决这个问题。

一、鲁迅作品的思想内涵和语言艺术特点

鲁迅小说及其它作品,是思想内容和艺术形式的完美的统一体。对鲁迅作品的理解,很大程度上取决于对其作品的思想性和文法特点的理解和把握。

(一)鲁迅作品的思想内涵

鲁迅作品有着深刻的思想内涵。其具体表现在:

1.对传统文化的反省

鲁迅是第一个告别传统文化的文人。他超越了历史和价值,超越了感情与理智,对传统文化思想进了整体反省。比如,鲁迅的小说集中地、真实地反映了传统文化的背景下的中国近代农村的社会现实,在其小说的宁静、平淡中透露出遮掩不住的沉闷和令人窒息的气息。

2.重视人文性与思想性

没有人文背景的文章,在鲁迅的作品里几乎是没有的。鲁迅在传统文化的广阔背景之上,表现了社会的变迁,意识的骚动与沉寂,人物的喜怒哀乐、悲欢离合。作者深深地切入传统文化稳定结构的内核,探究人物活动的内在因素,揭示传统文化下人物、社会、历史的必然。

3.强烈的时代责任感和社会责任感

鲁迅的许多作品,表现了他强烈的时代责任感和社会责任感。他揭露反动军阀的凶残卑劣及其走狗文人的阴险无耻,激励人们继续战斗。这是鲁迅先生一贯精神的表露。

(二)鲁迅作品的语言艺术特点

鲁迅的许多作品用笔深刻冷隽,句法简洁生动,体裁新颖独创,堪称是语言艺术的典范。

1.娴熟的文法

鲁迅的小说已形成了他的风格。他比较喜欢用倒叙的方法,常以此切入正题。这种方法完全打破了传统章回小说的老套路,避免了小说叙事中的拖沓与冗长,而直接把读者引入了作者的叙述空间,更便于作品主题思想的揭露。

2.细腻的描写和合理的剪裁

鲁迅作品的叙述极有条理,凡与主题无关的内容他绝不提及,但又十分注意使主题在含蕴百迭中得到升华。但凡文中的故事,一定是很完整的,其细节的刻划也非常细腻。比如:阿Q干什么活,祥林嫂怎么死的,孔乙己如何隐身而亡,迅哥儿的故乡又是如何变化的等等,没有不认真雕凿的。

3.体裁的多样性与灵活性

鲁迅在文艺创新中,作过了各种尝试:超现实主义的日记形式(《狂人日记》)、象征主义(《药》)、简短复述(《一件小事》)、持续独白(《头发的故事》)、集体的讽刺(《风波》)、自传体小说(《故乡》)、谐谑史诗(《阿Q正传》)、反讽(《伤逝》)等等,围绕叙述这个核心表现出了高度灵活性,充分体现了文学大师熟稔的写作技巧。

4.追求简洁生动的文字效果

鲁迅作品的遣词造句与众不同,用字造句都经过深思熟虑、千锤百炼,这正是他的作品具有深厚的吸引力的一个重要原因。这里既有鲁迅字斟句酌的文字运用的态度问题,也有他对文字表达的刻意追求。例如,他最恨的是那些以道学先生自命的人,所以他描写脑筋简单的乡下人时用笔比较宽容;但一写到《阿Q正传》里的赵太爷、《祝福》里的鲁四老爷等等,便针针见血,丝毫不肯容情了。他写《阿Q正传》看起来是为了痛陈阿Q这类人,想淋漓尽致地将他的丑态形容一下。然而在读到阿Q被枪毙这段情节时,我们就能从字里行间里觉得真正可恶的还是那些赵太爷、钱举人、把总老爷这些土豪劣绅,阿Q不过做了他们的牺牲品罢了。

二、鲁迅作品教学中的抛锚式教学策略

上文谈到,鲁迅的作品由于其独有的特点,使得其教学有一定的难度。如何以学生为主体,以教师为主导,把一篇难度较大的文章化繁为简传输给学生,使他们既能接受到语言的能力训练,又能使其从中感受到文学作品的艺术魅力,这确实需要我们进行多方面的思考。在教学中,我发现抛锚式教学是一个比较好的策略。其主要的方法,就是从组织有感染力的真实事件或真实问题入手来展开教学,鼓励学生自主学习和协作学习,并在此过程中寻求对作品的理解。

对数函数课件【篇3】

1、 掌握对数函数的定义和图象,理解并记忆对数函数的性质。 2、 培养分析推理能力 3、 培4、 重点:理解对数函数的定义,掌握对数函数的图像和性质。 5、 难点:底数a对数函数的影响 。首先复习对数的定义  师:上次讲细胞分裂问题时得到细胞个数y是分裂次数x的.函数。今天我们来研究相反的问题,如果要求这种细胞经过多次分裂,大约可以得到1万个,10万个等等,那么,分裂次数可以用怎样的关系式来表示呢? 生:表达式是x=log ,表示分裂次数x是细胞个数y的函数 师:如果用x表示自变量,y表示函数,此式又可化为y=logax ,那么它与指数函数有何关系?函数y=log ax的定义域是什么? 生:它们互为反函数,由于y= 的值域是{y|y>0}所以y=logax的定义域是{x|x>0} 师:对,由此我们就可以得到新的函数的定义。(引入课题《对数函数的概念及性质》)一般地,函数y=log ax叫做对数函数,(a>0且a≠1)其中是自变量,定义域是{x|x>0}

对数函数课件【篇4】

教学目标:

1.掌握对数函数的性质,能初步运用性质解决问题.

2.运用对数函数的图形和性质.

3.培养学生数形结合的思想,以及分析推理的能力.

教学重点:

对数函数性质的应用.

教学难点:

对数函数图象的变换.

教学过程:

一、问题情境

1.复习对数函数的定义及性质.

2.问题:如何解决与对数函数的定义、图象和性质有关的问题?

二、学生活动

1.画出 、 等函数的图象,并与对数函数 的图象进行对比,总结出图象变换的一般规律.

2.探求函数图象对称变换的规律.

三、建构数学

1.函数 ( )的图象是由函数 的图象

得到;

2.函数 的图象与函数 的图象关系是 ;

3.函数 的图象与函数 的图象关系是 .

四、数学运用

例1 如图所示曲线是对数函数=lgax的图象,

已知a值取0.2,0.5,1.5,e,则相应于C1,C2,

C3,C4的a的'值依次为 .

例2 分别作出下列函数的图象,并与函数=lg3x的图象进行比较,找出它们之间的关系

(1)=lg3(x-2);(2)=lg3(x+2);

(3)=lg3x-2;(4)=lg3x+2.

练习:1.将函数=lgax的图象沿x轴向右平移2个单位,再向下平移1个单位,所得到函数图象的解析式为 .

2.对任意的实数a(a>0,a≠1),函数=lga(x-1)+2的图象所过的定点坐标为 .

3.由函数= lg3(x+2), =lg3x的图象与直线=-1,=1所围成的封闭图形的面积是 .

例3 分别作出下列函数的图象,并与函数=lg2x的图象进行比较,找出它们之间的关系

(1) =lg2|x|;(2)=|lg2x|;

(3) =lg2(-x);(4)=-lg2x.

练习 结合函数=lg2|x|的图象,完成下列各题:

(1)函数=lg2|x|的奇偶性为 ;

(2)函数=lg2|x|的单调增区间为 ,减区间为 .

(3)函数=lg2(x-2)2的单调增区间为 ,减区间为 .

(4)函数=|lg2x-1|的单调增区间为 ,减区间为 .

五、要点归纳与方法小结

(1)函数图象的变换(平移变换和对称变换)的规律;

(2)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).

六、作业

1.课本P87-6,8,11.

2.课后探究:试说出函数=lg2 的图象与函数=lg2x图象的关系.

对数函数课件【篇5】

§2.2.2 对数函数及其性质

(一)

教学目标: 知识与技能:

1、掌握对数函数的概念。

2、根据函数图象探索并理解对数函数的性质。 过程与方法:

1、通过对对数函数的学习,渗透数形结合、分类讨论的思想。

2、能够用类比的观点看问题,体会知识间的有机联系。 情感态度与价值观:

1、培养学生观察、分析能力,从特殊到一般的归纳能力。

2、通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 教学重难点:

1、 重点:对数函数的图像和性质

2、 难点:底数 a 的变化对函数性质的影响 教学方法:讲授法、引导探究法、讲练结合法 教学过程:

一、情景设置

1、在《指数函数》中我们了解到细胞分裂的次数与细胞个数之间的关系可以用正整数指数函数y2x表示。那么分裂的次数x为多少时,y(即细胞个数)达到1万,或10万,由此可得到分裂次数x和细胞个数y之间的函数关系x=㏒2 y,如果按习惯x用表示自变量,y表示函数,即可得y=log2x,这就是一个对数函数,今天我们就要研究对数函数。

2、考古学家一般通过提取附着在出土文物、古遗址上死亡的残留物,利用tlog573012P估计出土文物或古遗址的年代。那么,t 能不能看成是 P 的函数?

二、新知探究

1、介绍新概念:一般地,我们把函数y=logax(a>0且a≠1)叫做对数函数,其中a为常量。

师:这里为什么规定a>0且a≠1。

(学生探究,相互合作交流,分组讨论,师参与探究活动并予以指导。只要学生说得正确均予以肯定。) 生A:a为底数,根据对数的定义a>0且a≠1。

生B:解析式y=logax可以变成指数式x=ay,由指数的定义,a>0且a≠1。(师充分予以表扬。) 师:函数f(x)loga(x1),f(x)2logax,f(x)logax1是对数函数吗? 生:不是,他们都是对数函数f(x)logax经过适当变形得到的。(师充分予以表扬。) 师:由对数函数的解析式,大家能看出它的部分性质吗?

(学生活动:合作交流探究,师参与探究并予以点评、指导。) 生C:根据对数的定义,自变量在真数的位置,故定义域为(0,+∞)。 生D:把它变成指数式x=ay可知,故值域为(-∞,+∞)。 师:说的好,该函数的性质到底是怎样的?下面我们来探讨一下,通常我们研究函数的性质要借助于一件工具,这个工具是什么? 生:图象。

师:和指数函数性质一样,我们分a>1和0<a<1。由特殊到一般,这里a>1取a=2,0<a<1取a=1/2。

2、性质的探究

①a>1,函数y=log2x的图象和性质 师:请同学们将P70的表格填完整。 (学生活动:填表格)

师:大家观察表格,自上而下,x是怎样变化的? 生:逐渐增大。

师:y的变化趋势呢? 生:逐渐增大。

师:由此你能预测y=log2x的单调性吗? 生:在整个定义域内单调递增。

师:到底是不是,我们请图象告诉大家。 (师生共同操作,画出图象。)

师:请同学们探究一下,从这个图上你能得出y=log2x的哪些性质?

(学生探究,分组讨论,交流合作,大胆猜想,教师参与探究活动,并回答学生的问题,予以指导。只要学生说得有道理,均应予以及时表扬、鼓励。函数的性质以学生归纳总结为主,教师点评。) 师:一个a=2不能说明a>1时的函数性质,我们要再取两个a,这里再取a= 2 和3,既有有理数,又有无理数,就可以代表a>1的情况了。 (学生活动,合作交流,对不同的a值进行列表。)

(教师活动:以小黑板的形式展示提前画好的函数图象,用不同颜色的粉笔表示不同的曲线。)

(学生活动:相互合作交流,共同探究,教师参与探究活动并予以解疑,引导他们对函数性质进行归纳总结。最后,在热烈的气氛中以学生的讲述的形式完成探究任务。) 生1:它的定义域是{x∣x>0}(即(0,+∞)) 师:由图象可以看出来吗? 生1:整体位于y轴右侧。

生2:值域为R,因为图象向上方和下方无限延伸。 生3:在整个定义域内单调递增。

师:开始我们由解析式和表格预测的性质是这样的吗? 生(齐声回答):是。

生4:无对称性,是非奇非偶函数 生5:均与x轴交于(1,0)点。

生6:在x>1时y>0,在0<x<1时,y<0。 ②0<a<1,函数y=log2x的图象和性质

师:同学们探究的很好,那么0<a<1时,我们取a=1/2,y=log1/2x的性质是怎样的呢?

(师生合作,画图象,学生探究,合作交流,总结归纳y=log1/2x性质,教师予以点评、指导。)

师:同样的,一个a=1/2不能说明全体0<a<1的性质,我们仍然次取a,这里a取1/3,和12

(同①:学生探究,教师巡视并参与探究活动,引导学生进行总结、归纳,最后在热烈的气氛中以学生讲述的形式总结出y=logax(0<a<1)的性质。) 生a:定义域为(0,+∞),因图象在y轴右侧。 生b:值域为R,因图象向上、向下均无限延伸。 生c:在定义域内单调递减。

师:这又证明了我们的预测是正确的。 生d:与x轴交于(1,0) 生e:无对称性,是非奇非偶函数

生f:当x>1时,y<0,当0<x<1,y>0

三、例题讲解:

例1 求下列函数的定义域:

(1)ylogax2;(2)yloga(4x);(3)。 注:

1、强调定义域是自变量的取值集合;

2、归纳求定义域的一般条件。 例2 P72例9

四、课堂练习: P73 ex 1、2

五、课堂小结:

1、对数函数的概念

2、对数函数y=logax的图象和性质(a>0且a≠1)。

六、课后作业: P74 7

对数函数课件【篇6】

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用

对数函数的性质解决简单的问题.

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数

学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的意义、图像与性质.

难点:对数函数性质中对于在与两种情况函数值的不同变化.

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

归纳得出对数函数的图像与性质.

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.

四、说教程

1、温故知新

我通过复习细胞分裂问题,由指数函数引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生

分析问题的能力.

2、探求新知

在理解对数函数的意义的基础上,研究对数函数的图像与性质.关键是抓住对数函数与指数函数互为反函数的关系,图像关于直线对称,从而作出对数函数的图像.由学生自主作出对数函数和的图像后,引导学生填写所发表格(该表格一列填有在及两种情况下的图像与性质),通过类比学习,小组讨论,采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质.

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、

观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,

协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定

向性学习和主动合作式学习.

3、课堂研究,巩固应用

例1主要利用对数函数的定义域是来求解.在这个例题中,重点、难点是第三小题的理解.这一小题是课后练习“求函数(其中)的定义域”这道题目的变形.我觉得让学生直接解决课后练习有较大困难,因此设计了“求函数的定义域”这一小题;理解了这个小题,课后练习也就迎刃而解了.而在解题过程中,学生发现求解不等式是一个难点.我在解决这一难点时,采用了两种方法:一是启发学生将“0”写成1的对数,并且是写成,这样就可以利用对数函数的单调性求出不等式的解,最后向学生介绍不等式是一个对数不等式;二是引导学生观察对数函数的图像,通过数形结合来求解不等式.

例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,要分底数及两种情况.

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的

解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.

4、课外研究

使学生学会知识的迁移,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:

(1)理解对数函数的意义;

(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;

(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

解法,体会分类讨论的思想方法.

6、课外作业

公式无法显示,完整WORD文档点击下载此文件

对数函数课件【篇7】

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的`分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

教学设计示例

1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

由 得 .又 的值域为 ,

所求反函数为 .

那么我们今天就是研究指数函数的反函数-----对数函数.

由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?

教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .

在此基础上,我们将一起来研究对数函数的图像与性质.

提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2. 草图.

教师画完图后再利用投影仪将  和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

例1.  求下列函数的定义域:

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

(1) 与 ;      (2) 与 ;

(3) 与 ;           (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

(1)    定义域(2)值域(3)截距(4)奇偶性(5)单调性

(1) 已知 是函数 的反函数,且 都有意义.

① 求 ;

② 试比较 与4 的大小,并说明理由.

(2) .

对数函数课件【篇8】

1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

由 得 .又 的'值域为 ,

所求反函数为 .

那么我们今天就是研究指数函数的反函数-----对数函数.

对数函数课件【篇9】

对数函数是我们学习数学需要学到的,看看下面的相关练习题吧!

解析:[3-52] =(352) =5 × =5 =5.

2.若log513log36log6x=2,则x等于        (  )

解析:由换底公式,得lg 13lg 5lg 6lg 3lg xlg 6=2,

∴-lg xlg 5=2.

∴lg x=-2lg 5=lg 125.∴x=125.

3.(江西高考)若f(x)= ,则f(x)的定义域为   (  )

A.(-12,0)       B.(-12,0]

解析:f(x)要有意义,需log  (2x+1)>0,

4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是  (  )

5.函数y=ax-1的定义域是(-∞,0],则a的取值范围是    (  )

解析:由ax-1≥0得ax≥1,又知此函数的定义域为(-∞,0],即当x≤0时,ax≥1恒成立,∴0

6.函数y=x12x|x|的图像的大致 形状是         (  )

解析:原函数式化为y=12x,x>0,-12x,x

7.函数y=3x-1-2,   x≤1,13x-1-2,  x>1的值域是      (  )

C.(-∞,-1]       D.(-2,-1]

解析:当x≤1时,0

∴-2

则-2

8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图像为

解析:由题意知前3年年产量增大速度越来越快, 可知在单位时间内,C的值增大的很快,从而可判定结果.

9.设函数f(x)=log2x-1, x≥2,12x-1,  x<2,若f(x0)>1,则x0的取值范围是  (  )

∴log2(x0-1)>1,即x0>3;当 x01得(12)x0-1>1,(12)x0>(12)-1,

10.函数f(x)=loga(bx)的图像如图,其中a,b为常数.下列结论正确的是   (  )

B.a>1,0

又f(1)>0,即logab>0=loga1,∴b>1.

11.若函数y=13x x∈[-1,0],3x  x∈0,1],则f(log3 )=________.

解析:∵-1=log3∴f(log3 )=(13)log3 =3-log3 =3log32=2.13.若函数y=2x+1,y=b,y=-2x-1三图像无公共点,结合图像求b的取值范围为________.当-1≤b≤1时,此三函数的图像无公共点.14.已知f(x)=log3x的值域是[-1,1],那么它的反函数的值域为________.∴log313≤log3x≤log33,∴13≤x ≤3.∴f(x)=log3x的定义域是[13,3],∴f(x)=log3x的反函数的值域是[13,3].15.(12分)设函数y=2|x+1|-|x-1|.(1)讨论y=f(x)的单调性, 作出其图像;(2)求f(x)≥22的'解集.解:(1)y=22,  x≥1,22x,  -1≤x1,若对于任意的x∈[a,2a ],都有y∈[a,a2]满足方程logax+logay=3,求a的取值范围.解:∵logax+logay=3,∴logaxy=3.∴xy=a3.∴y=a3x.∴函数y=a3x(a>1)为减函数,又当x=a时,y=a2,当x=2a时,y=a32a=a22 ,∴a22,a2[a,a2].∴a22≥a.又a>1,∴a≥2.∴a的取值范围为a≥2.17.(12分)若-3≤log12x≤-12,求f(x)=(log2x2)(log2x4)的最大值和最小 值.=(log2x)2-3log2x+2=(log2x-32)2-14.又∵-3≤log x≤-12,∴12≤log2x≤3.∴当log2x=32时,f(x)min=f(22)=-14;当log2x=3时,f(x)max=f(8)=2.18.(14分)已知函数f(x)=2x-12x+1,(1)证明函数f(x)是R上的增函数;(2)求函数f(x)的值域;(3)令g(x)=xfx,判定函数g(x)的奇偶性,并证明.解:(1)证明:设x1,x2是R内任意两个值,且x10,y2-y1=f(x2)-f(x1)=2x2-12x2+1-2x1-12x1+1 =22x2-22x12x1+12x2+1=22x2-2x12x1+12x2+1,当x10.又2x1+1>0,2x2+1>0,∴y2-y1>0,∴f(x)是R上的增函数;(2)f(x)=2x+1-22x+1=1-22x+1,∵2x+1>1,∴0

对数函数课件【篇10】

1.设a=log54,b=(log53)2,c=log45,则( )

解析:选D.a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c.

2.已知f(x)=logax-1在(0,1)上递减,那么f(x)在(1,+∞)上( )

x∈(0,1)时,u=x-1为减函数,∴a>1.

∴x∈(1,+∞)时,u=x-1为增函数,无最大值.

∴f(x)=loga(x-1)为增函数,无最大值.

3.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为( )

解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.

4.函数y=log13(-x2+4x+12)的单调递减区间是________.

解析:y=log13u,u=-x2+4x+12.

令u=-x2+4x+12>0,得-2∴x∈(-2,2]时,u=-x2+4x+12为增函数,∴y=log13(-x2+4x+12)为减函数.解析:选B.当a>1时,loga2<logaa,∴a>2;当0<a<1时,loga2<0成立,故选B.解析:选B.∵loga2∴03.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是( )A.[22,2] B.[-1,1]解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m解得22≤x≤2.4.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的`值为( )解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;当0<a<1时,1+a+loga2=a,loga2=-1,a=12.解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0<a<1时,y=logat为减函数,t=(a-1)x+1为减函数,∴f(x)=loga[(a-1)x+1]为增函数.6.(高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则( )解析:选B.∵1∴0∵0又c-b=12lg e-(lg e)2=12lg e(1-2lg e)=12lg elg10e2>0,∴c>b,故选B.7.已知0<a<1,0<b<1,如果alogb(x-3)<1,则x的取值范围是________.解析:∵0<a<1,alogb(x-3)<1,∴logb(x-3)>0.又∵0<b<1,∴0<x-3<1,即3<x<4.8.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,所以1-x2a2-x2=1a=1(负根舍去).9.函数y=logax在[2,+∞)上恒有y>1,则a取值范围是________.解析:若a>1,x∈[2,+∞),y=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),y=-logax≥-loga2,即-loga2>1,∴a>12,∴12<a<1.10.已知f(x)=6-ax-4ax1.又当x0,∴a

对数函数课件【篇11】

我校是一所农村高中学校,学生的基础比较薄弱,发散性思维还未能得到充分的开发.因此,一直以来,我的数学课堂教学的侧重点是:运用探究式教学方式,积极调动学生学习的主动性,大力培养学生的开放性思维.

我本次授课的内容是《对数函数及其性质》,整个课题按照新课程标准的要求大概需要3个课时来完成,我提交的是第一个课时的教案.

函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在实际生活中有着广泛的应用.对数函数这部分教学内容,蕴含了函数与方程及转化的数学思想和方法,是后续学习中不可缺少的部分,也是高考的必考内容.因此在第一课时的教学中,如何有效地激发学生学习对数函数的兴趣是这节课的首要任务.为了降低学生学习的难度,我按照新课程标准的要求制定了适合学生实际水平的教学目标,并在教学过程中把重点放在如何准确把握对数函数的图象与特征上.下面从三个方面来说明我的教案设计.

一、教学把握得当

(一)概念引入自然.我首先和学生一起回顾了考古学家是如何估算古遗址的年代,然后让学生动手计算当碳14的含量P取不同数值时相对应的生物死亡年数t,最后再引导学生共同观察t与p之间的关系,从而自然而然的引入概念.

(二)透彻讲解定义.在引入对数函数的概念后,许多学生可能未能及时地意识到它只是一个形式定义,因此我通过材料1来帮助学生消化与掌握概念.

(三)坚持让学生自己动手实验.一方面学生已经掌握了画图的一般方法,另一方面通过让学生自己画图,使得他们对图象有丰富的感性认识,印象更加深刻.这样处理,体现了以学生为主体,教师为主导的教学方式.

(四)巧妙地突破难点.我采取把学生分成若干个小组的形式,由他们进行小组合作讨论、探究、相互补充的方法得出对数函数的性质.这样不但激发了学生学习新知识的兴趣,也提高了学生分析问题的能力以及团队合作的精神,同时也加深了他们对图象的认识.

另外,学生讨论完毕后,我先让一个小组选派代表上讲台跟全班同学交流他们所得到对数函数的一般图象和性质,然后再请其它小组选派代表提出补充意见,再由老师进行归纳、总结.这样做不但使学生愉快地接受了新知识、活跃了课堂气氛,而且突出双边活动,开启了学生的思维,也符合新课标的教学理念.

(五)灵活处理例题与练习题.我是通过两则材料(材料2、4)来加深学生对对数函数性质的理解与运用.材料2是作为例题来体现的,目的是让学生利用对数函数的单调性来解决,使学生学会运用数形结合的思想来解决问题.其中材料2的第1、2小题是以具体数字为底数的对数值大小的比较,第3小题则是以字母为底数的对数值大小的比较,这样子设计体现了由具体到抽象、由易到难的原则,符合学生的认知水平.

而材料4是以练习题的形式出现的,它是材料2的再现,以口答的形式解决,目的主要是加深学生对新知识的理解与应用;至于材料3是为了提高学生如何求对数型函数定义域的认识而设置的.

二、充分发挥多媒体辅助教学的优势.一方面为学生展现自己的才华提供了平台:(一)鼓励学生在得到具体的对数函数图象并且经过充分的讨论后敢于上台把观察得出的结论与其他同学交流;(二)为学生之间互相点评各自解答的练习提供支持.另一方面在讲解对数函数的性质时,多媒体演示的直观性、生动性跃然于纸上.这样不仅激发了学生学习的兴趣,还提高了课堂效率.

三、课堂采取灵活多样的教学方法.既有教师的讲解,又有小组的合作讨论,还有师生的互动交流.这样就充分调动了学生探索新知识的积极性,发挥了学生的主体作用,营造了和谐的课堂气氛,做到了寓学于乐.

小结侧重于再次讲解对数函数的图象特征及其性质,以期加深学生的印象,同时与教学目的相呼应.

数学这门科学需要观察和探究,我所设计的这节课就是让学生通过动手实验,然后观察、探究新知的过程,但由于缺乏经验,难免有不足之处,真诚地希望得到各位专家学者的批评指正,使我能够不断地成长与进步.

对数函数课件【篇12】

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后意见。形成共识,x的值不可以任意取,有限定范围,其范围是0

对数函数课件【篇13】

各位评委、老师们:大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、教学目标设计:

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。

2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。

3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点

2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。

在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:

比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

五、教学媒体设计:

根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:

教师利用多媒体准备的素材①对数函数的图像②例题和习题③与本节课相关的结论

设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。

六、教学过程的设计:

1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?

设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法――借助图象研究性质.

由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数

1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).

学生思考问题:①为什么对数函数概念中规定②对数函数对底数的限制:

教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。

探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)

环节三、典例分析,深化知识、

设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:

本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

对数函数课件【篇14】

(提问)用什么方法来画函数图像?

(学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.

(学生2)用列表描点法也是可以的。

请学生从中上述方法中选出一种,大家最终确定用图像变换法画图.

(师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

由以上两条可说明图像位于 轴的右侧.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

例1. 求下列函数的定义域:

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

(1) 与 ; (2) 与 ;

(3) 与 ; (4) 与 .

让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

案例反思:

本节的重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

"高一函数课件"延伸阅读