搜索

复数课件

发布时间: 2023.06.16

复数课件汇集。

教案课件是老师日常工作中不可或缺的一部分,需要每天细心打磨。撰写完善的教案课件,能够避免遗漏重要内容,那么如何创作一份令自己满意的教案课件呢?这里为您提供一些可能有用的“灵感”,如果您觉得有用,不妨分享给身边的朋友哦!

复数课件 篇1

设计说明

本节课是在学生已有知识和经验的基础上,让学生进一步体会数据的收集、整理、描述和分析的过程,认识复式条形统计图,能根据统计图表进行简单的数据分析,作出合理的判断。

1、经历提出问题、分析问题、解决问题的过程,注重知识的有效建构。

本节课通过营造轻松活泼的学习氛围,激发学生参与统计活动的兴趣,从学生已有的知识经验出发,呈现复式统计表和两幅单式条形统计图,既复习、激活学生已有的对单式条形统计图的认知,又为后继的学习提供准备材料。接着通过提出对统计图的数据进行分析比较才能作答的问题,让学生先遇到具体问题,再引导学生思考可以用数据来解释,并让学生尝试运用,从而切实经历复式条形统计图产生的过程,这对培养学生运用统计方法解决实际问题的主动性和敏锐性是大有好处的,这也恰恰是统计观念的精髓所在。由单式条形统计图合并为复式条形统计图的过程,既能让学生认识到复式条形统计图的学习是反映更丰富的信息的需要,又能体会到复式条形统计图是由单式条形统计图发展而来的,初步感悟复式条形统计图的结构。

2、培养学生的统计观念。

引导学生从统计图中发现问题,表达自己的想法,体会统计的作用,感受数学与生活的密切联系,发展学生的统计观念。

课前准备

教师准备PPT课件

学生准备小楷纸

教学过程

⊙谈话引入

1、我们学过哪些统计图?这些统计图表示数据的方法和特点各是什么?

(学生自由发言)

2、导入新课:本节课我们继续学习统计图的相关知识。

设计意图:通过提问让学生回忆以前所学的知识,使学生对统计知识经历一个再认识的过程,并且通过比较明确各种统计图的特点,为学习新知奠定了基础。

⊙合作探究,学习新知

1、引导学生进行猜测。

师:在体育课上你们玩过投球游戏吗?根据你的经验猜一猜:投球时单手投得远,还是双手投得远?结果与什么有关?

(学生小组讨论、交流,根据已有经验进行猜测,大多数学生认为单手投得远)

2、探究验证,引出复式条形统计图。

(课件出示第一活动小组同学的投球情况统计表)

(1)引导发问:①根据上面的表格能比较出结果吗?

(能,但是比较困难)

②应该用什么方法来比较?(应该画统计图来比较)

③画什么统计图来比较更合适呢?(条形统计图)

(2)讨论:怎样用条形统计图表示上面两组数据呢?

(学生在小组内讨论、交流,探究解决问题的方法)

预设

生1:用两个条形统计图分别表示出第一活动小组单手投球和双手投球的情况。

生2:在一个统计图里将这两种投球情况表示出来。

(3)引导学生制作条形统计图。

①学生动手制作并进行展示。(情况一:制成两个统计图;情况二:制成一个统计图)

②引导学生观察、对比哪种统计图更容易看出投球的结果。

(学生通过观察、对比,发现在一个统计图里表示出两种投球情况,更容易看出投球的结果)

(4)明确将两组数据在同一个条形统计图里表示出来的统计图叫复式条形统计图。

3、教学复式条形统计图的制作方法。

(课件出示表示上面两组数据的复式条形统计图)

第一活动小组同学的投球情况统计图

(1)小组讨论复式条形统计图的各部分组成。

(2)讨论、总结复式条形统计图的制作方法。

小结:复式条形统计图的制作方法与单式条形统计图的制作方法相同,只是需要用不同的图例表示不同组的数据。

4、探究复式条形统计图的特点。

(1)复式条形统计图和单式条形统计图有什么区别?

①小组合作探究,找出两者的不同之处。

②汇报探究结果。

(2)总结复式条形统计图的特点。

复数课件 篇2

教学目标

(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;

(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;

(3)掌握复数的模的定义及其几何意义;

(4)通过学习,培养学生的数形结合的数学思想;

(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.

教学建议

一、知识结构

本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.

二、重点、难点分析

本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.

三、教学建议

1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.

2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系

如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.

相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.

2.

这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.

3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.

4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.

5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段OZ的长度.它也叫做复数的模或绝对值.它的计算公式是.

复数课件 篇3

可数:

有单数和复数两种形式。指一个人或一件事物时,用单数形式;指两个或多个人或事物时用复数形式。名词由单数形式变成复数形式的规则如下:

可数名词复数的规则变化:

1、一般的名词词尾直接加-s 。

2、以s, x, ch, sh结尾的名词,在词尾加-es 。

3、以“辅音字母+y”结尾的名词,要先将y改为i再加-es。

4、以o结尾的名词,通常有生命的加es无生命的加s。

5.以f 或fe 结尾的'名词,要将f或fe改为v再加-es。

可数名词复数的不规则变化:

鹅足牙oo变ee, goose→geese foot→feet tooth→teeth

老鼠虱子也好记,ous变ic, mouse→mice louse→lice

孩子加上ren,鱼鹿绵羊不用变。 child→children fish→fish deer→deer sheep→sheep

1.不可数名词没有复数,当它作句子的主语时,谓语动词要用单数形式。

如:The food is very fresh、食品很新鲜。

2、有的不可数名词也可以作可数名词,有复数形式,但他们的意义往往发生变化。

3、很多的不可数名词表示泛指时为不可数,表示种类时就可数,但意义大多不发生变化。

复数课件 篇4

一般every,each后用单数;all后面的名词是复数。

1、名词性从句及不定式、动名词作主语时,谓语动词一般用单数形式。

2、当主语是单数,后面跟着由including,with,together with along with,like,in addition to,as well as,rather than,but,except,more than

accompanied by等连接的短语时,谓语动词用单数。

3、one,one of,every,everyone,everybody,each,many a,either,neither,no one,nobody,anyone,anybody,someone,somebody 用作主语或修饰主语时,谓语动词用单数形式。

4、and所连接的.两个单数名词作主语,指同一人、同一件事或同一概念时,其谓语动词用单数。

5、表示时间、距离、重量、体积、金钱的复数名词,作主语时作为整体来看待谓语动词通常用单数。

6、“a portion lof,a series of,a kind of,a body of,a species of,a pair of+名词”作主语时,其谓语动词一般用单数形式。

7、事件、机构、国名、作品等专有名词作主语时,谓语动词用单数。

复数课件 篇5

教材分析:

学生从幼儿园走入小学,来到一个新的环境,老师需要帮助他们尽快的熟悉环境和认识身边的人,解除他们的焦虑和恐慌。同时制作名字树,加强同学间的交往,懂得互相关心、互相帮助。

(二)导入新课:

教师出示“集体大树”的范图,介绍这棵大树代表我们的班集体。

1、提出问题:如何才能使这棵大树变得完整?并且我们都能来到这个集体中?

3、教师小结:这棵大树代表我们的班集体:一年级X班,但它不是一棵完整的树,只有我们每位同学都来到这里,成为它的一员,这棵树才能茁壮地成长。

1、教师出示外形和制作方法不同的两片树叶,树叶上写着老师的名字,老师做自我介绍。

3、教师总结并演示实验结果:对折——从开口处剪或撕树叶的一半——展开成为完整的叶子(教师辅助演示)

5、教师小结:大家一起动脑筋,用自己的方法来制作“名字树叶”,看谁的树叶最好、最漂亮、最先来到“集体大树”上。

6、学生制作,教师巡回辅导。

作业要求:选择自己喜欢的纸张和适合自己的方式,最好能自己创作出其他方法;在树叶上面写上自己的名字,反面写上自己的爱好。

7、师生共同将“名字树叶”贴在“集体大树”上。围绕“集体大树”,请“名字树叶”的小作者逐个向全班同学介绍自己,如:姓名、年龄、爱好等等。全班同学给以掌声鼓励,使介绍者感受到集体的温暖。

6、教师总结:

同学们你们看,我们用“名字树叶”装点的这棵“集体大树”多美呀!集体因为有我们的存在才充实,才充满活力,我们也因为有集体的爱护、培养才能够茁壮成长。在以后的日子里,我们将共同生活在这个集体中,用我们的行动去维护它,用我们的双手将它建设得更加美好!

复数课件 篇6

教材分析:

《数系的扩充和复数的引入》是北师大版普通高中课程标准实验教科书选修2-2的第五章第一节的内容,主要包括数的概念的扩充,复数的相关概念。复数的引入是中学阶段数系的又一次扩充,引入复数以后,不仅可以使学生对于数的概念有一个更为完整的认识,也为进一步学习打下基础。通过本节课的学习,要使学生了解熟悉扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。

教学目标:

1. 知识与技能:使学生体会数的概念是逐步发展的;了解引进复数的必要性;理解复数的基本概念。

2. 过程与方法:经历数的概念的发展和数系扩充的过程,体会数学发现和创造的过程,以及数学发生、发展的客观需求;

3. 情感、态度与价值观:通过对复数的学习,体会实际需求与数学内部的矛盾在数系扩充中的作用;通过数系的扩充历程,使学生体会数学博大精深的文化魅力,激发学生学习数学的兴趣;培养学生勇于知疑问难,善于探索的学习习惯和良好的思维品质

教学重点:

复数的概念。

教学难点:

虚数单位i的引入及复数的概念

教学过程:

【情景导入】

通过人类生产生活的需要及数学内部矛盾的`解决需要这两条线索,回顾数的扩充脉络,引入新的问题:在实数集中求方程x2+1=0 的解?启发学生类比前三次数系扩充的问题的解决,得到要解决这个问题可以引入一个新的数。

设计意图:采用观看视频的方式进行情景导入,紧扣主题,通过梳理数系的扩充历程,使学生体会熟悉扩充的必要性,了解熟悉扩充前后的联系,为后面的学习做好铺垫。

【概念形成】

1、我们引入新数i,叫做“虚数单位”,并规定:

(1)i2=-1;

(2)实数可以与i进行四则运算,进行四则运算时,原有的加法运算律、乘法运算律仍然成立.

2、复数的定义

形如a+bi(a,b∈R)的数称为复数,通常表示为Z= a+bi(a,b∈R)其中a叫做复数的实部,b叫做复数的虚部.i称为虚数单位。

全体复数组成的集合叫复数集,通常用C表示。

设计意图:通过问题的提出、发展、解决的过程,让学生感受由实数系扩充到复数系的历程,体会数学家的创新精神和实践能力,让学生参与其中,培养学生解决问题的能力。

【自主学习】

阅读教材第99页倒数三段内容,完成下面的问题:

问题1:复数是怎样分类的?

对于复数 ,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.

问题2:复数集与数集N、Z、Q、R之间有什么关系?你能否用韦恩图表示?

复数集与其它数集之间的关系:

设计意图:让学生通过阅读、思考的方式获得知识,培养学生积极参与的意识和自主探索的能力。

【合作探究】

例1:完成下列表格(分类一栏填实数、虚数或纯虚数)

2-3i

6i

实部

虚部

分类

例2:实数m取什么值时,复数z=(m-2)+(m+1)i 是

(1)实数;(2)虚数;(3)纯虚数。

变式练习:实数m取什么值时,复数z(m-2)(m-1)+(m-1)(m-3)i 是纯虚数?

设计意图:通过例题,强化学生对复数概念的理解,提高学生分析问题、解决问题的能力,规范做题步骤。

【课堂练习】

1、以 3i-2 的虚部为实部,以-3+3i 的实部为虚部的复数是

2、若复数(m-1)+(m+2)(m-1)i 是纯虚数,则实数m 的

值为 。

设计意图:及时反馈,学以致用,加深学生对知识的理解,提高学生的解题能力。

【课时小结】

这节课你都学到了什么?有哪些收获?

设计意图:通过学生总结,教师归纳,培养学生归纳概括的能力,回顾本节课内容,为后面的学习打下基础。

【课后作业】

1、书面作业:习题5-1 A组1

2、预习《 1.2复数的有关概念》

3、课后探究:请你查阅、收集一些关于实数集扩充到复数集的数学史料,并根据自己的理解对数系的扩充进行整理,写成一篇关于数系扩充历程的文章。

设计意图:巩固本节课所学知识,同时带着新的问题走出课堂,扩大学生的视野,感受数学文化的魅力,体会数学来源于生活,服务于生活。

复数课件 篇7

复数的减法及其几何意义

教学目标

1.理解并掌握复数减法法则和它的几何意义.

2.渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力.

3.培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).

教学重点和难点

重点:复数减法法则.

难点:对复数减法几何意义理解和应用.

教学过程设计

(一)引入新课

上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义.(板书课题:复数减法及其几何意义)

(二)复数减法

复数减法是加法逆运算,那么复数减法法则为(+i)-(+i)=(-)+(-)i,

1.复数减法法则

(1)规定:复数减法是加法逆运算;

(2)法则:(+i)-(+i)=(-)+(-)i(,,,∈R).

把(+i)-(+i)看成(+i)+(-1)(+i)如何推导这个法则.

(+i)-(+i)=(+i)+(-1)(+i)=(+i)+(--i)=(-)+(-)i.

推导的想法和依据把减法运算转化为加法运算.

推导:设(+i)-(+i)=+i(,∈R).即复数+i为复数+i减去复数+i的差.由规定,得(+i)+(+i)=+i,依据加法法则,得(+)+(+)i=+i,依据复数相等定义,得

故(+i)-(+i)=(-)+(-)i.这样推导每一步都有合理依据.

我们得到了复数减法法则,两个复数的差仍是复数.是确定的复数.

复数的加(减)法与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减),即(+i)±(+i)=(±)+(±)i.

(三)复数减法几何意义

我们有了做复数减法的依据——复数减法法则,那么复数减法的几何意义是什么?

设z=+i(,∈R),z1=+i(,∈R),对应向量分别为,如图

由于复数减法是加法的逆运算,设z=(-)+(-)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,1为一条边画平行四边形,那么这个平行四边形的另一边2所表示的向量OZ2就与复数z-z1的差(-)+(-)i对应,如图.

在这个平行四边形中与z-z1差对应的向量是只有向量2吗?

还有.因为OZ2Z1Z,所以向量,也与z-z1差对应.向量是以Z1为起点,Z为终点的向量.

能概括一下复数减法几何意义是:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.

(四)应用举例

在直角坐标系中标Z1(-2,5),连接OZ1,向量1与多数z1对应,标点Z2(3,2),Z2关于x轴对称点Z2(3,-2),向量2与复数对应,连接,向量与的差对应(如图).

例2根据复数的几何意义及向量表示,求复平面内两点间的距离公式.

解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2-z1的模.如果用d表示点Z1,Z2之间的距离,那么d=|z2-z1|.

例3在复平面内,满足下列复数形式方程的动点Z的轨迹是什么.

(1)|z-1-i|=|z+2+i|;

方程左式可以看成|z-(1+i)|,是复数Z与复数1+i差的模.

几何意义是是动点Z与定点(1,1)间的距离.方程右式也可以写成|z-(-2-i)|,是复数z与复数-2-i差的模,也就是动点Z与定点(-2,-1)间距离.这个方程表示的是到两点(+1,1),(-2,-1)距离相等的点的轨迹方程,这个动点轨迹是以点(+1,1),(-2,-1)为端点的线段的垂直平分线.

(2)|z+i|+|z-i|=4;

方程可以看成|z-(-i)|+|z-i|=4,表示的是到两个定点(0,-1)和(0,1)距离和等于4的动点轨迹.满足方程的动点轨迹是椭圆.

(3)|z+2|-|z-2|=1.

这个方程可以写成|z-(-2)|-|z-2|=1,所以表示到两个定点(-2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线.是双曲线右支.

由z1-z2几何意义,将z1-z2取模得到复平面内两点间距离公式d=|z1-z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程.使有些曲线方程形式变得更为简捷.且反映曲线的本质特征.

例4设动点Z与复数z=+i对应,定点P与复数p=+i对应.求

(1)复平面内圆的方程;

解:设定点P为圆心,r为半径,如图

由圆的定义,得复平面内圆的方程|z-p|=r.

(2)复平面内满足不等式|z-p|<r(r∈R+)的点Z的集合是什么图形?

解:复平面内满足不等式|z-p|<r(r∈R+)的点的集合是以P为圆心,r为半径的圆面部分(不包括周界).利用复平面内两点间距离公式,可以用复数解决解析几何中某些曲线方程.不等式等问题.

(五)小结

我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,可以用复数研究解析几何问题,不等式以及最值问题.

(六)布置作业P193习题二十七:2,3,8,9.

探究活动

复数等式的几何意义

复数等式在复平面上表示以为圆心,以1为半径的圆。请再举三个复数等式并说明它们在复平面上的几何意义。

分析与解

1.复数等式在复平面上表示线段的中垂线。

2.复数等式在复平面上表示一个椭圆。

3.复数等式在复平面上表示一条线段。

4.复数等式在复平面上表示双曲线的一支。

5.复数等式在复平面上表示原点为O、构成一个矩形。

说明复数与复平面上的点有一一对应的关系,如果我们对复数的代数形式工(几何意义)之

复数课件 篇8

本课时的教学要对学过的小数的知识进行全面地复习,并联系学生的现实生活让学生体会这些小数的意义,以元、角、分为背景,使学生理解小数的意义,掌握小数比较大小的方法,同时提高学生计算一位小数加减法的能力。本节复习课在教学设计上关注以下几点:

1.重视基础知识的积累。

对学过的小数的相关知识进行回顾,结合教材习题,对学过的小数的意义、大小的比较、简单的计算进行集中、系统地复习,加深学生的记忆,为以后的学习打下坚实的基础。

2.关注学生对知识的应用。

在教学过程中,结合教材中的习题以及这些知识在生活中的运用,让学生对所学的小数的相关知识有深刻而具体的认识,进而能够运用所学知识解决现实生活中的问题,做到学以致用,体现数学的应用价值。

课前准备:PPT课件

教学过程:

⊙整理复习

1.回顾本学期学习的知识。

师:本学期即将结束了,请同学们回顾本学期你学到了哪些数学知识?

预设

生:年、月、日;整数四则混合运算;整十、整百、整千数乘(除以)一位数的口算;观察物体和周长;两、三位数乘一位数;小数的初步认识和小数加减法。

师:这节课我们先来复习小数的相关知识。

2.结合教材习题,复习小数的意义。

(1)课件出示情境图,请同学们结合下面情境,说一说每个小数表示的意思。

同桌间互相交流后汇报。

预设

生1:第一幅图的2.50元表示一本日记本的价钱是2元5角。

生2:第二幅图的3.00元表示一个卷笔刀的价钱是3元。

生3:第三幅图的2.80元表示一把剪刀的价钱是2元8角。

生4:第四幅图的3.05米表示这条彩带的长度是3米5厘米。

生5:最后一幅图的5.55米表示这棵松树的高度是5米5分米5厘米。

(2)把上面的前三种文具的价钱从小到大排列,说说你是怎样想的。

学生独立排列,与同桌交流自己的想法后汇报。

预设

生:因为日记本和剪刀的价钱都没到3元,所以卷笔刀的价钱最高,又因为2.50元是2元5角,2.80元是2元8角,所以2.50元

(3)我会读,我会写。

课件出示习题:

读出小数:5.3015.070.0

写出小数:三点四零七点八零十二点五

学生独立完成,师巡视指导。

(4)我会算。

课件出示习题:

师:请同学们独立计算,并说一说为什么小数点要对齐。

学生独立完成,师巡视指导。

指名汇报结果并说出小数点要对齐的原因。(小数点对齐,就是相同数位对齐,且在计算时和整数加减法一样要从末位开始算起)

设计意图:对小数部分的各个知识点进行有序的回顾,并结合有针对性的练习,有效地巩固所学知识,使学生对所学知识有系统地掌握。

dg15.com编辑推荐

相反数课件汇集13篇


在上课之前,准备好课堂所需的教案和课件非常重要,每一位老师都非常熟悉。编写教案和制作课件是教育教学改革中至关重要的部分,编写出优质的教案和课件需要什么技巧呢?如果你想了解“相反数课件”的定义和应用,那就请继续阅读下文,我们非常欢迎你来探索。希望你在阅读过程中感到愉悦,并且愿意分享给别人。

相反数课件(篇1)

化学反应的实质是旧化学键断裂和新化学键生成,从外观上看,所有的化学反应都伴随着能量的释放或吸收、发光、变色、放出气体、生成沉淀等现象的发生。能量的变化通常表现为热量的变化,但是化学反应的能量变化还可以以其他形式的能量变化体现出来,如光能、电能等。

当化学反应在一定的温度下进行时,反应所释放或吸收的热量称为反应在此温度下的热效应,简称为反应热。通常用符号Q表示。

反应热产生的原因:由于在化学反应过程中,当反应物分子内的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新结合成生成物分子,即新化学键形成时,又要释放能量。生成物分子形成时所释放的总能量与反应物分子化学键断裂时所吸收的总能量的差即为该反应的反应热。

对于在等压条件下进行的化学反应,如果反应中物质的能量变化全部转化为热能(同时可能伴随着反应体系体积的改变),而没有转化为电能、光能等其他形式的能,则该反应的反应热就等于反应前后物质的焓的改变,称为焓变,符号ΔΗ。

为反应产物的总焓与反应物总焓之差,称为反应焓变。如果生成物的焓大于反应物的焓,说明反应物具有的总能量小于产物具有的总能量,需要吸收外界的能量才能生成生成物,反应必须吸热才能进行。即当Η(生成物)>Η(反应物),ΔΗ>0,反应为吸热反应。

如果生成物的焓小于反应物的焓,说明反应物具有的总能量大于产物具有的总能量,需要释放一部分的能量给外界才能生成生成物,反应必须放热才能进行。即当Η(生成物)

把一个化学反应中物质的变和能量的变化同时表示出来的学方程式,叫热化学方程式。

不仅表明了化学反应中的物质化,也表明了化学反应中的焓变。

①只能写在标有反应物和生成物状态的化学方程式的右边。

若为放热反应,ΔΗ为“-”;若为吸热反应,ΔΗ为“+”。ΔΗ的单位一般为kJ·mol-1。②焓变ΔΗ与测定条件(温度、压强等)有关。因此书写热化学方程式时应注明ΔΗ的测定条件。

③热化学方程式中各物质化学式前面的化学计量数仅表示该物质的物质的量,并不表示物质的分子数或原子数。因此化学计量数可以是整数,也可以是分数。

④反应物和产物的聚集状态不同,焓变ΔΗ不同。因此,必须注明物质的聚集状态才能完整地体现出热化学方程式的意义。气体用“g”,液体用“l”,固体用“s”,溶液用“aq”。热化学方程式中不用“↑”和“↓”。若涉及同素异形体,要注明同素异形体的名称。

⑤热化学方程式是表示反应已完成的量。

由于ΔΗ与反应完成的物质的量有关,所以方程式中化学式前面的化学计量数必须与ΔΗ相对应,如果化学计量数加倍,则ΔΗ也要加倍。当反应向逆向进行时,其焓变与正反应的焓变数值相等,符号相反。

将两种反应物加入仪器内并使之迅速混合,测量反应前后溶液温度的变化值,即可根据溶液的热容C,利用下式计算出反应释放或吸收的热量Q。

式中:C表示体系的热容;T1、T2分别表示反应前和反应后体系的温度。

(2)实验注意事项:

①作为量热器的仪器装置,其保温隔热的效果一定要好。

②盐酸和NaOH溶液浓度的配制须准确,且NaOH溶液的浓度须大于盐酸的浓度。为了使测得的中和热更准确,所用盐酸和NaOH的浓度宜小不宜大,如果浓度偏大,则溶液中阴阳离子间相互牵制作用就大,电离度就会减少,这样酸碱中和时产生的热量势必要用去一部分来补偿未电离分子的离解热,造成较大的误差。

③宜用有0.1分度值的温度计,且测量时尽可能读准,并估读到小数点后第二位。温度计的水银球部分要完全浸没在溶液中,而且要稳定一段时间后再读数,以提高所测温度的

以上溶液中所发生的反应均为H++OH-=H2O。由于三次实验中所用溶液的体积相同,溶液中H+和OH-的浓度也是相同的,因此三个反应的反应热也是相同的。

(1)定义:在稀溶液中,酸与碱发生中和反应生成1molH2O(l)时所释放的热量为中和热。中和热是反应热的一种形式。

(2)注意:中和热不包括离子在水溶液中的生成热、物质的溶解热、电解质电离的吸收热等。中和反应的实质是H+与OH-化合生成H2O,若反应过程中有其他物质生成,这部分反应热也不在中和热内。

(1)概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳定的化合物时所放出的热量,叫做该物质的燃烧热,单位为kJ·mol-1。如果是1g物质完全燃烧的反应热,就叫做该物质的热值。

①燃烧热是反应热的一种,并且燃烧反应一定是放热反应,其ΔΗ为“-”或ΔΗ

②25℃,101kPa时,可燃物完全燃烧时,必须生成稳定的化合物。如果该物质在燃烧时能生成多种燃烧产物,则应该生成不能再燃烧的物质。如C完全燃烧应生成CO2(g),而生成CO(g)属于不完全燃烧,所以C的燃烧热应该是生成CO2时的热效应。

燃烧热是以员1mol物质完全燃烧所放出的'热量来定义的,因此在书写表示燃烧热的热化学方程式时,应以燃烧1mol物质为标准,来配平其余物质的化学计量数,故在其热化学方程

了解化学反应完成时产生热量的多少,以便更好地控制反应条件,充分利用能源。

能提供能量的自然资源,叫做能源。能量之间的相互转化关系如下:

从自然界直接取得的自然能源叫一次能源,如原煤、原油、流过水坝的水等;一次能源经过加工转换后获得的能源称为二次能源,如各种石油制品、煤气、蒸气、电力、氢能、沼气等。

②常规能源与新能源在一定历史时期和科学技术水平下,已被人们广泛利用的能源称为常规能源,如煤、石油、天然气、水能等。人类采用先进的方法刚开始加以利用的古老能源以及利用先进技术新发展的能源都是新能源,如核聚变能、风能、太阳能、海洋能等。

③可再生能源与非再生能源可连续再生、永远利用的一次能源称为可再生能源,如水力、风能等;经过亿万年形成的、短期内无法恢复的能源,称为非再生能源,如石油、煤、天然气等。

注意:足够的空气不是越多越好,而是通入量要适当,否则过量的空气会带走部分热量,造成浪费。扩大燃料与空气的接触面,工业上常采用固体燃料粉碎或液体燃料以雾状喷出的方法,从而提高燃料燃烧的效率。

目前主要能源是化石燃料,它们蕴藏有限且不能再生,终将枯竭,且从开采、运输、加工到终端的利用效率都很低。我们目前使用的最多的燃料,仍是化石燃料,它们都是古代动植物遗体埋在地下经过长时间复杂变化形成的,除含有C、H等元素外,还有少量S、N等元素,它们燃烧产生SO2、氮的氧化物,对环境造成污染,形成酸雨。此外,煤的不充分燃烧,还产生CO,既造成浪费,也造成污染。

(2)含义:一定量的可燃物完全燃烧放出的热量,等于可燃物的物质的量乘以该物质的燃烧热。

(3)应用:“热量值与热化学方程式中各物质的化学计量数(应相对应)成正比”进行有关计算。

(4)应用:“总过程的反应热值等于各分过程反应热之和”进行有关计算。

化学反应的焓变只与反应体系的始态(各反应物)和终态(各生成物)有关,而与反应的途径无关。如果一个反应可以分几步进行,则各分步反应的反应焓变之和与该反应一步完成时的焓变是相同的,这就是盖斯定律。

①反应热效应只与始态、终态有关,与过程无关。

有些反应很慢,有些反应不容易直接发生,有些反应的产品不纯(有副反应发生),给测定反应热造成了困难。应用盖斯定律,可以间接地把它们的反应热计算出来。

①热化学方程式与数学上的方程式相似,可以移项(同时改变正、负号);各项的系数(包括ΔΗ的数值)可以同时扩大或缩小相同的倍数。

②根据盖斯定律,可以将两个或两个以上的热化学方程式(包括其ΔΗ)相加或相减,从而得到一个新的热化学方程式。

③可燃物完全燃烧产生的热量=可燃物的物质的量×燃烧热。

注:计算反应热的关键是设计合理的反应过程,正确进行已知方程式和反应热的加减合并。

列出方程或方程组计算求解。

②有关热化学方程式及有关单位书写正确。

③计算准确。

(3)进行反应热计算的注意事项:

①反应热数值与各物质的化学计量数成正比,因此热化学方程式中各物质的化学计量数改变时,其反应热数值需同时做相同倍数的改变。

②热化学方程式中的反应热,是指反应按所给形式完全进行时的反应热。

③正、逆反应的反应热数值相等,符号相反。

④用某种物质的燃烧热计算反应放出的总热量时,注意该物质一定要满足完全燃烧且生成稳定的氧化物这一条件。

相反数课件(篇2)

教学目标:

1、知识与技能:(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

教师提出问题:上图中数轴上的'点B和点D表示的数各是什么?有什么关系?

教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

3、学生活动:在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是 ; -6的相反数是 ;-(-3)= ;-(-0.8)= ;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

2、填空:

①的相反数是 ; ② 的相反数是; 的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是 。

4、若α、β互为相反数,则α+β= 。

5、-(-4)是 的相反数,-(-2)的相反数是 。

-(-9)=; +(-3.5)= ;

-=;-{-}= 。

7、若-x=10,则x的相反数在原点的 侧。

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

相反数课件(篇3)

相反数是小学数学中的基本概念之一,也是学习数学的重要基础,是许多数学操作的基础。本篇文章将介绍相反数的定义、性质和求法,同时附带丰富的得分点,让小学生更好地理解相反数。

一、相反数的定义

相反数是指两个数的和为零的数,即在数轴上对称的两个数。比如,2和-2、3/4和-3/4、-5和5都是相反数。

二、相反数的性质

1.相反数相加等于0:a+(-a)=0。

2.两个相反数的绝对值相等。

3.正数的相反数是负数,负数的相反数是正数。

4.任何数加上它的相反数等于0,即a+(-a)=0。

三、相反数的求法

1.取反法:将数的符号取反,绝对值不变。比如,2和-2是对称的,-2是2的相反数,2是-2的相反数。

2.加法逆元:对于数a,在数轴上找到其对称的数-a,使得a+(-a)=0。这里-a是a的加法逆元,也是a的相反数。

四、相反数的作用

1.计算:相反数往往用于加减法和乘除法的计算。

2.方向:相反数常用于表示方向的相反。

3.余数:偶数的相反数一定是奇数,奇数的相反数一定是偶数,相邻奇数和相邻偶数的相反数之和相等。

五、如何教授相反数

1.引导学生理解相反数的定义和性质。

2.利用数轴与实物展示相反数的概念,让学生感受到两个数的相反数是对称的。

3.创造趣味性和互动性的教学环境,如出题、打板游戏等,让学生发现相反数的规律。

4.运用实际问题让学生应用相反数的概念,加深对相反数的理解。

5.反复练习相反数的计算,加深记忆,使学生能够轻松运用相反数进行计算。

六、相反数的小技巧

1.边角数的相反数只有两个,即1和-1。

2.正数和负数的大小不仅取决于它们的大小,还与它们的符号有关。

3.熟记一些常用数的相反数,如2的相反数是-2,3的相反数是-3等,便于快速计算。

4.当需要计算多个相反数的和时,可以将它们分为两组,分别相加再取相反数。

总之,相反数是数学中一个基本的概念,对于小学生学习数学具有重要的意义。通过简单生动的方式,引导学生理解相反数的定义、性质和求法,加深对其概念的理解和记忆。希望本文能为小学生学习相反数提供一些帮助。

相反数课件(篇4)

教学目标:

1.知道一个数的绝对值与这个数本身或它的相反数有什么关系;

2.会利用绝对值比较两个有理数大小;

3.在具体进行两个负数的大小比较中,培养推理论证能力,体会数形结合与转化的思想方法.

教学重点:

知道一个数的绝对值与这个数本身或它的相反数有什么关系;会利用绝对值比较两个有理数大小.

教学难点:

会利用绝对值比较两个有理数大小.

1.根据绝对值与相反数的意义填空:

(1)|2.3|= , = ,|6|= ;

(2)|-5|= , |-10.5|= ,|- |= ;-5的相反数是______,-10.5的相反数是______,- 的相反数是______;

(3)|0|=______,0的相反数是______.

2.(1)任意说出一个负数,并说出它的绝对值、它的相反数.

(2)一个数的绝对值与这个数本身或它的相反数有什么关系?

3.(1)2与3哪个大?这两个数的绝对值哪个大?

(2)-1与-4哪个大?这两个数的绝对值哪个大?

(3)任意写出两个负数,并说出这两个负数哪个大?他们的绝对值哪个大?

(4)两个有理数的大小与这两个数的'绝对值的大小有什么关系?

小组讨论:

1.一个数的绝对值一定与这个数本身相等吗?

2.一个数的绝对值一定与它的相反数相等吗?

3.举例说明一个数的绝对值与这个数本身或它的相反数有什么关系?

议一议:

1.数轴上的点的大小是如何排列的?

2.两个数比较大小,绝对值大的那个数一定大吗?

(1) 与 ; (2)-3.5与-4.6;

(3)-|- 与-(-2).

三、课堂反馈

1.-2的符号是______,绝对值是______;3.5的符号是______,绝对值是______.

2.符号是+,绝对值是6的数是______.

3. 符号是-,绝对值是4.3的数是______.

4.一个数绝对值是3,这个数是 ;

一个数的绝对值是它本身,这个数是 ;

一个数的绝对值是它的相反数,这个数是 .

5.计算:(1)|- +|- = ;(2)|-3|-|-2.5|= .

6.比较下面有理数的大小并且说明理由.

(1)-0.7与-1.7 ; (2)- 与-0.273;

(3 ) +(-5)与-(-3) .

-4,+(- ),-(-1.5),0,|-3|

四、课堂作业 :

相反数课件(篇5)

相反数这一课是有理数第三节的内容,本节课的学习目标是借助数轴了解相反数的概念,相反数的代数意义和几何意义;掌握一对相反数的特点并会写出已知数的相反数;会化简一个数的多重符号。学习的重难点是理解相反数的意义。

本节课首先复习数轴的有关知识,在让学生在数轴上标出+5,-5,+2,-2,观察+5,-5到原点的距离,+2,-2到原点的距离。引出相反数的概念,加深对概念的理解。归纳相反数的意义,代数意义和几何意义。从学生的学习效果来看,学生会求一个数的相反数,也会求数a的相反数,但是有些学生在求用字母表示的数的相反数时往往会犯几类错误,第一,求a+b的相反数,学生会写成a-b,或者把a-b的相反数写成a+b;第二,求a-b的相反数时,写成-a-b,不把a-b用括号括起来。

学习了负数之后,学生存在一个理解的误区,容易误认为带负号的数就是负数。比如学生通常会认为-a就是负数,事实上,-a是什么数取决于a。如果a是正数,那么-a是负数;如果a是负数,那么-a是正数。

还有部分学生对相反数的意义理解不清,一、相反数必须是成对出现的,不能单独存在,而单独的一个数不能说成相反数;二、“只有”是指除符号以外,两个数完全相同,应与“只要符号不同”区分开,如+3和-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数;三、对于相反数的代数意义不会运用,比如题目告诉我们说a+b与a-b互为相反数,学生根据这一句话不会列式,这可能是对相反数的代数意义理解不深。

通过这节课的学习和练习,我认为知识的学习,不仅是要把每个概念弄清楚,更重要的是这些概念的意义和运用。会正确的解题就是要求学生能够把学到的知识活学活用,因此,在今后的教学中,要加强训练,通过练习来巩固学生学到的知识点。

相反数课件(篇6)

1.使学生理解相反数的意义;

2.给出一个数,能求出它的相反数;

3.理解绝对值的意义,熟悉绝对值符号;

4.给一个数,能求它的绝对值。

教学重点、难点:

1.理解掌握双重符号的化简法则。

首先,咱们来画一条数轴,然后在数轴上标出下列各点:3和-3,1.6和-1.6,请同学们观察:(1)上述这两对数有什么特点?(2)表示这两对数的数轴上的点有什么特点?(3)请你再写出同样的几对点来?

(1)上面的这两对数中,每一对数,只有符号不同。

(2)这两对数所对应的点中每一组中的两个点,一个在原点的左边,一个在原点的右边,而且离开原点的距离相同。

说明:

(1)注意理解相反数定义中“只有”的含义。

(2)相反数是相对而言的,即如果6是-6的相反数,则-6也是6的相反数,因而相反数全是成对出现的。

(3)两个互为相反数的数在数轴上的对应点(除0外),在原点的两旁,并且距离原点距离相等的两个点,至于0的相反数是0的`几何意义,可理解为这两点距离原点都是零。

例(1)分别指出9和-7的相反数;

(1)9的相反数是-9,-7的相反数是7;

(2)-2.4是2.4的相反数,

同学们思考交流,老师最后讲解,学生交流得出:一个正数的相反数是一个负数,而一个负数的相反数是一个正数。

(1)数轴上表示有理数5,2,0.5的点到原点的距离各是多少?

(2)数轴上表示有理数-5,-2,-0.5的点到原点的距离各是多少?

(3)数轴上表示0的点到原点的距离是多少?

学生思考回答,老师引导总结出绝对值的定义:

在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。通常把有理数a的绝对值,记作|a|。

如下图所示:在数轴上表示-5的点与原点的距离是5,即-5的绝对值是5,记作|-5|=5。

下面咱们根据绝对值的定义,来看一组题目:

同学们观察,完成题目然后总结规律:

(1)一个正数的绝对值是它本身。

(2)一个负数的绝对值是它的相反数。

(3)0的绝对值是0。

因为正数可用a>0来表示,负数可用a

(1)如果a>0,那么|a|=a,

(2)如果a

(3)如果a=0,那么|a|=0,

上面这几个式子可合并写成:

由上面的几个式子可以看出,不论a取何值,它的绝对值总是正数或0(通常也称为非负数)。

(1)先分别求出它们的绝对值。

四、课后总结:

1.通过学习,了解相反数的意义及找到一个数的相反数的方法。

2.了解绝对值的代数意义和它在数轴上表示的意思。

相反数课件(篇7)

――; |―5| |-3.5|;

|―5| 0; |―3| |3|.

3、绝对值小于4的整数是,绝对值不小于4的非负整数是_________,的绝对值等于5,则的值为______.

4、绝对值是4的数有___个,分别为_____.

1、小明的家在学校西边3km处,小丽的家在学校东边3km处.

(1)你能将小明家、小丽家和学校的相对位置在数轴上表示出来吗?(小明家用点A表示,小丽家用点B表示,学校用点O表示)

(2)观察A、B两点表示的数,你发现了什么?

2、观察下列各对有理数,你发现了什么?与同学交流.

2和-2,0.8和-0.8,2和-2.

总结出相反数的概念:

3、学习教材22页例3,完成“练一练”23页第1,2题.

4、数a的相反数可表示为;

则-5的相反数可表示为_______;

而我们知道―5的相反数是___.

所以得结论:

5、学习教材22页例4,完成“练一练”23页第3,4题.

A.正数的绝对值是负数;

B.符号不同的两个数互为相反数;

C.π的相反数是D3.14;

D.任何一个有理数都有相反数.

1、填空:

-2的相反数是 ,3.75与 互为相反数,

相反数是其本身的数是 .

2、-(+7)= ,-(-7)= ,

-= ,-= .

3、已知A、B两点分别为数轴上表示互为相反数的两个数,且两点间的距离为7,则这两个点表示的数为_____和______.

相反数课件(篇8)

相反数小班教案

一、教学目标

1. 知道相反数的概念和意义。

2. 掌握相反数加减的方法。

3. 能正确运用相反数进行加减运算。

二、教学重点

1. 相反数的概念和意义。

2. 相反数加减的方法。

三、教学难点

1. 相反数的概念用浅显易懂的语言来讲解。

2. 相反数加减方法的理解和掌握。

四、教学过程

(一)引入

1. 教师询问学生:“小朋友们,你们知道何为相反数吗?”

2. 学生回答:“知道,它们互为完全相反的数。”

3. 接着,教师深入浅出地给学生介绍相反数的概念和意义,同时用生动的例子来阐述,以帮助学生更好地理解。

(二)达标探究

1. 学生在课桌上练习相反数。

2. 向学生讲解相反数的加减法则。

3. 通过实例,来让学生了解相反数的加减法和使用。

4. 整理重点公式和易错点,让学生反复练习巩固。

(三)拓展与提高

1. 针对课本上的例题来练习一遍。

2. 同时,引出新问题,进行提高。如:“四个数,如果相邻两个数互为相反数,那么它们之和为0。请你来试试。”

3. 学生可以使用相反数加减法,推理之后,得到答案为0。

(四)课堂固化

1. 教师再次复习相反数的概念和意义,帮助学生巩固掌握。

2. 带领学生回顾课堂知识点和重难点,在强化记忆的同时,也帮助学生思考自己还需要进一步复习改进的地方。

五、作业

1. 按要求练习相反数及加减法。

2. 回忆本课中重点习题,并加强巩固。

六、教学心得

1. 通过本课的教学,学生深入理解了相反数的概念和意义,掌握了相反数加减法的方法。

2. 教学中通过生动丰富的例子和练习,让学生不仅记住公式,而且掌握了使用方法,锻炼了运算能力。

3. 教学中,教师还介绍了如何利用相反数来简化数学运算,让学生直观感受到数学在生活中的应用和意义。

总之,本课的教学着重培养了学生的数学思维能力,让小朋友们更好地理解了相反数的概念和意义,掌握了相反数加减的方法,从而提高了对数学知识的理解和掌握能力。

相反数课件(篇9)

1、化简:

2、若一个数的相反数是2,则这个数是_____,若一个数的相反数是-3,则这个数是___,若一个数的相反数是它本身,则这个数是______.

3、的绝对值的相反数是_______,0.7的相反数的绝对值是_______.

4、绝对值最小的数是____,绝对值不小于3的整数有 个,分别是.

1、完成教材23页填空.

2、观察教材上填空的结果思考:一个数的绝对值与这个数本身或它的相反数有什么关系?与同学交流.

正数的绝对值是_______; 负数的绝对值是_______; 零的绝对值是_______.

3、学习教材23页例5,完成教材24页“练一练”第一题.思考:

(1)求一个数的绝对值关键看什么?

(2)如何求一个数的绝对值呢?

结论:

5、学习教材23页例6,完成教材24页“练一练’第二题.

6、练习:

(1)|-5|=_______; |2.4|=_______; |3|=_______;

|0|=_______; |-1|=_______; |2|=_______;

+|-1.5|=_______; -|-2|=_______;

+(-5)=_______;―(-4)=_______;-(+5)=_______.

(2)若|x|=x,则x_______0;

若|x|=-x,则x_______0.

(3)绝对值等于5的数是______.

(4)绝对值小于5的负整数是______.

(5)绝对值不大于5而又不小于2的整数是______.

(6)绝对值不大于5.3而又不小于2的整数是______.

(7)已知a>b>0,-a_____-b.

7、这节课主要学习了什么?你有什么收获?

+|-5|___-|-4|;-(+5)___-

2、|x|=3,则x=_____;|-x|=|-2|,则x=______.

3、相反数大于-2而又小于3的整数有__________;-(+7)的相反数是________.

4、比-3大且比4小的整数有_______个,分别是__________.

5、绝对值大于1且不大于4的负整数有__________个,分别为__________.

6、若分别求x,y的值.

相反数课件(篇10)

相反数课件

相反数是指两个数在数轴上对称分布的数,即互为相反数。例如,2和-2,-4和4就是相反数。相反数有很多实际应用,如在代数学中解方程、在几何学中描述镜像和对称性等。为此,学习相反数的概念、性质和运用是非常重要的。

一、相反数的定义

相反数的定义很简单,对于一个实数a,它的相反数记为-a,满足a+(-a)=0。这个定义可以解释为:将一个数在数轴上的位置取反,得到的就是它的相反数。

例如,数轴上有点A表示实数2,那么点B表示实数-2,点A和点B在数轴上关于原点对称,它们是相反数。

二、相反数的性质

相反数有一些重要的性质:

1.一个数和它的相反数的和等于0,即a+(-a)=0。

2.相反数互为相反数,即a的相反数是-a,-a的相反数是a。

3.对于任意实数a,a×(-1)=(-a)×1=-a。

4.相反数的积是负数,即a×(-a)=-(a×a)=-(a²)。

5.相反数具有数轴对称性质,即对于实数a,在数轴上它的相反数在原点的对称点。

三、相反数的运用

1.相反数可以用于解决代数方程的根问题。例如,若方程2x+3=1,则x的值为x=(-2)/3。因为2x+3=1等价于2x=-2,x=-1。这里的-1就是2的相反数。

2.相反数可以用于描述几何中的镜面对称、轴对称等。

例如,在平面几何中,不难发现,对于一个点A(x,y),它的镜像点A'(-x,-y)关于坐标原点对称。这就是因为A和A'在数轴上的对称性质使得它们是相反数。类似的,对于直线、平面等几何图形的对称性质,我们也可以使用相反数来描述。

3.相反数可以用于计算实数的加减、乘除等。

例如,计算2.3和-1.8的和,可以先将-1.8化为它的相反数1.8,然后进行2.3+1.8=4.1的运算,最后再将结果-4.1化为相反数-(-4.1)=4.1,即为2.3-1.8的计算结果。

总之,相反数是数学中非常基础和重要的概念之一,它具有简单、易懂、易用的特点,在数学中有着广泛的应用。因此,我们需要对相反数的定义、性质和运用有清晰的认识,从而更好地理解和应用数学知识。

相反数课件(篇11)

相反数课件

相反数是数学中一个很重要的概念,它在数学中有着广泛的应用。相反数,就是一对数中其中一个数的符号改为相反数,而数值不变。例如:正数10的相反数就是负数-10,负数-5的相反数就是正数5。相反数在数学的运算中具有很强的意义,相当于数轴上一个正数与它的负数相对应。

一、相反数的定义及性质

相反数是指数值相等而符号相反的两个数,相反数互为相反数。用数学符号表示为:如果a+b=0,则称a为-b的相反数,b为a的相反数,记为-a和+b。

相反数的三个性质:

1. 任何数的相反数都是唯一的;

2. 两个数的和等于它们的相反数的差;

3. 两个数的积等于它们的相反数的积。

二、相反数的运算规律

相反数的运算规律包括加法和乘法两种:

1.相反数的加法:a+(-a)=0,0+(-a)=-a,-a+a=0,(-a)+(-b)=-(a+b)

2.相反数的乘法:a·(-a)=-a·a=-a²

三、相反数的应用

相反数在数学中有广泛的应用,主要体现在以下三个方面:

1.解方程:当我们解方程的时候,往往要涉及到相反数的概念。例如:5x-2=3,如果将等式两边都加上2,得到5x=5,再将等式两边都除以5,得到x=1。这里我们用到了a+(-a)=0的性质。

2.研究数对关系:在数对中,如果其中一个数是另一个数的相反数,那么这两个数之间就有着很特殊的关系。例如:(3,-3),(-4,4),(5,-5)都是相反数对。

3.研究正负数的运算:在数轴上,正数和负数在数轴上有明显的区域划分;在运算中,如果是相同符号的数相加,则结果为正数,否则为负数。例如:3+(-2)=-1,-5+(-3)=-8。

四、相反数的错误应用

在相反数的概念理解不清楚的情况下,会造成一些错误的应用。

1.误解相反数为加法逆元:相反数与加法逆元是两个概念。相反数是指数值相等而符号相反的两个数,而加法逆元是指与它相加的数的和等于零的数。

2.相反数与绝对值混淆:绝对值是一个数值的大小,而相反数只是改变了符号。例如:-5的相反数是5,但是|-5|=5。

综上,相反数是数学中的一个重要概念,在数学中具有广泛的应用,主要体现在解方程、研究数对关系和研究正负数的运算等方面。在使用相反数时,需要注意相反数的定义及性质,避免误用相反数。

相反数课件(篇12)

1、先画一条数轴,在数轴上表示下列各数的点,并比较它们的大小:

―4,2.4,0,―,―3,1.

2、一天,汽车司机张师傅从车站出发,沿东西方向行驶,规定向东为正,若向东行驶3千米,记作_____;若向西行驶2千米,记作_____.

3、数轴上表示数―3的点A到原点的距离是,表示数5的点B到原点的距离是,A、B两点之间的距离是.

4、数轴上到原点的距离是2的点有个,表示的数是.

1、小明的家在学校西边3km处,小丽的家在学校东边2km处.

(1)如果把学校门前的大街看成一条数轴,把学校看成原点(向东的方向为正方向),你能把小明和小丽家的位置在数轴上表示出来吗?

(2)从数轴上看,哪家离学校较近?哪家离学校较远?

2、数轴上表示一个数的点与原点的距离,叫做这个数的.用符号“”表示.

3、如图,你能说出数轴上A、B、C、D、E、F各点所表示的数的`绝对值吗?

4、学习教材21页例题,完成“练一练”.

5、想一想:

(1)任何有理数的绝对值都是数;

(2)绝对值最小的数是.

6、例3:某厂生产闹钟,从中抽取5件检验时,比标准时间多的记为正数,比标准时间少的记为负数,请根据下表,选出最准确的闹钟.

误差不超过5秒的为合格品,否则为次品,问有几台合格?

7、练习:某车间生产一批圆形零件,从中抽取8件进行检验,比规定直径长的毫米数记为正数,比规定直径短的毫米数记为负数,检查记录如下:

指出第几个零件最标准?最接近标准的是哪个零件?误差最大的是哪个零件?

1、填空:(1)|-3|=______, |1|=_____, |-0.4|=______,

|0|=_____, |9|=______, |-2|=________;

(2)绝对值小于3的所有整数是________________,非正整数是____________;

(3)若|x|=6,则x=__________;

(4)在数轴上点A表示-,点B表示,则点___________离原点的距离近些.

2、计算:

(1)|―3|×|―6.2|(2)|―5|+|―2.49|

(3)―|―|(4)|―|÷||

相反数课件(篇13)

相反数课件

相反数是一个数的另一个数,它们的和就是0。例如,1和-1是一对相反数,2和-2是一对相反数,以此类推。相反数是一个很重要的概念,在数学和日常生活中都有广泛的应用。本课件将介绍相反数的概念、性质和应用。

第一部分 相反数的概念

相反数是一个数的负数,它们的和等于0。例如,1和-1就是一对相反数,因为它们的和为0。相反数的概念可以用数轴来表示。在数轴上,每个数对应着一个点,正数对应一个点往右,负数对应一个点往左。例如,在数轴上,点1往右对应正数1,点-1往左对应负数-1。因为1和-1相距2个单位,所以它们在数轴上是对称的。这个对称性,也是相反数的一个重要特点。

第二部分 相反数的性质

相反数有一些基本的性质。首先,每个数的相反数是唯一的。例如,-1是1的唯一的相反数,2的唯一的相反数是-2,等等。其次,如果a是一个数,那么-a和-a都是它的相反数。例如,-1是1的相反数,1是-1的相反数,等等。对称性也是相反数的另一个重要性质。如果a和b是一对相反数,那么-b和-a也是一对相反数,因为它们的和都是0。最后,相反数的乘积等于-1。例如,1的相反数是-1,所以-1乘以-1等于1。

第三部分 相反数的应用

相反数在数学和日常生活中都有广泛的应用。例如,在解方程式时,我们可以把一个方程式变成相反数式子,从而更容易地解出答案。在计算机科学中,相反数也有着重要的应用。例如,计算机中的二进制数系统中,负数采用补码表示法。在经济学中,相反数也有着广泛的应用。例如,我们可以用相反数计算负债和资产之间的差距,从而更好地了解一家公司的财务状况。

结论

相反数是一个很重要的概念,它有着广泛的应用。通过了解相反数的概念、性质和应用,我们可以更好地理解数学和日常生活中的许多问题。相反数的对称性和乘积等于-1的性质,也为我们提供了一些强有力的工具,用来解决各种问题。

二次函数复习课件9篇


我们精心为您准备了“二次函数复习课件”的文章,希望能为您提供借鉴。编写教案和课件是老师的必修课,在写作中需要特别认真。老师上课时也必须按照教案和课件实施。

二次函数复习课件 篇1

这节课采用了“问题——探究”的教学模式,教学过程注重学习方法、思维方法,注重探索方法,注重到学生的思维起点,搭建平台,同时渗透数形结合的思想,增强学生运用数学思想方法解决问题的意识,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”。

本节课从学生回忆一次函数、反比例函数的图象入手,展示生活中与二次函数图象相关的图片激发学生的学习热情引入新课让学生进入独学过程。每个小组成员各自在同一个坐标系内作出一组二次函数图象。在第二部分合作探究的学习过程中教师设计了三个问题:(1)通常怎样作一个函数的.图象,要特别注意什么?(2)二次函数y=ax2的图象是什么?所画的图象有何相同点,不同点?(3)在同一个坐标系中画函数y=ax2与y=-ax2的图象怎样画简便?教师的教学设计思路清晰,注意了学生的知识生成点,教师在整个教学过程中起到一个引领的作用。学生是在围绕教师的教学设计中进行有序地学习,在小组讨论中学生积极参与,体现了学生良好的学习习惯,从学生的课堂反应看,课堂教学效果是比较理想的。

1.学生是第一次接触二次函数,在第一个环节独学过程中学生画出二次函数的图象部分学生是有困难的,有的学生即使能画出来但也不规范,在这一个环节中教师可以结合学生作的图象进行展示说说优缺点,并进行适当的引导和课件示范起到画龙点睛的作用,规范作法和注意事项。

2.在第二个合作交流学习中,教师的问题设置可以更加明确一些,引导学生结合所画的图象从开口方向、对轴性、顶点坐标、增减性等进行总结报告从而得到函数y=ax2性质。

二次函数复习课件 篇2

A.y=2x+1 B.y=(x-1)2-x2 C.y=2x2-7 D.y=-1x2

3.已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底面半径r(cm)之间的函数表达式为( )

A.V=14r2 B.r=14πV C.V=14πr2 D.r=V14π

4.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为( )

A.y=(1+x2) B.y=a(1+x) C.y=a(1+x2) D.y=a(1+x)2

5.用一根长为10 m的木条,做一个长方形的窗框,若长为x m,则该窗户的面积y(m2)与x(m)之间的函数表达式为 .

6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品售价为x元,可卖出(350-10x)件商品.则所获得的利润y(元)与售价x(元)之间的函数表达式为 .

①y=x2+1;②y=1x2+1;

③y=(2x-3)(3x-2)-6x2;

④y=x2+x-1+1;

⑤y=x2+1;

⑥y=(x-1)(x+4).

9.如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B,C重合),在AC上取一点E,使∠ADE=45°.设BD=x,AE=y,则y关于x的函数表达式为 .(不要求写出自变量x的取值范围)

10.已知二次函数y=x2-bx-2,当x=2时,y=-2,求当函数值y=1时,x的值.

11.已知两个变量x,y之间的表达式为y=(m+2)xm2+m-2x-2.

(1)当m为何值时,此函数是二次函数;

(2)当m为何值时,此函数是一次函数.

12.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,相框内部的面积(指图中较小矩形的面积)为y cm2.

(1)写出y与x的函数表达式;

(2)若相框内部的面积为280 cm2,求相框边的宽度.

13.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售价定为x元,每天所赚利润为y元.

(1)请你写出y与x之间的函数表达式;

(2)当利润等于360元时,求每件商品的售价.

14.如图,一面利用12 m的住房墙,另外三面利用22 m的建筑材料建成一个矩形花圃,其中有两个1 m宽的小门,设花圃的宽AB为x m,面积为S m2.

(1)求S与x的函数表达式及x的取值范围;

(2)如果要建成面积为45 m2的花圃,AB的长为多少米?

13. 解:(1)x=-10x2+280x-1600(10≤x≤20) (2) 14元

14. 解:(1)S=-3x2+24x(4≤x

二次函数复习课件 篇3

系数化成1→解。

4.根与系数顶的关系:

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

二次函数复习课件 篇4

 

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

 

二、教学重点、难点

 

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

 

新课

1.由具体问题引出二次函数的定义。

(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的面积S与半径R之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

(2)函数析式是S=30L—L2;

y=50x2+100x+50。

(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:

(1)列表   ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;

(2)描点  按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;

(3)边线  用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:

(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0.2的间距取x值表和图13-14。按课本P118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

 

小结

1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

 

补充例题

下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?

(1)y=2-3x2;                    (2)y=x (x-4);

(3)y=1/2x2-3x-1;                (4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;            (6)y=(x-6)(6+x)。

 

四、教学注意问题

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)

 

一、教学目的

1.使学生初步理解二次函数的概念。

2.使学生会用描点法画二次函数y=ax2的图象。

3.使学生结合y=ax2的图象初步理解抛物线及其有关的概念。

 

二、教学重点、难点

 

1.在下列函数中,哪些是一次函数?哪些是正比例函数?

(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x2 - 2。

2.什么是一无二次方程?

3.怎样用找点法画函数的图象?

 

新课

1.由具体问题引出二次函数的定义。

(1)已知圆的面积是Scm2,圆的半径是Rcm,写出空上圆的.面积S与半径R之间的函数关系式。

(2)已知一个矩形的周长是60m,一边长是Lm,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式。

(3)农机厂第一个月水泵的产量为50台,第三个月的产量y(台)与月平均增长率x之间的函数关系如何表示?

(2)函数析式是S=30L—L2;

y=50x2+100x+50。

(2)处变量的最高次数是2。

我们说三个式子都表示的是二次函数。

一般地,如果y=ax2+bx+c(a,b,c没有限制而a≠0),那么y叫做x的二次函数,请注意这里b,c没有限制,而a≠0。

2.画二次函数y=x2的图象。

按照描点法分三步画图:

(1)列表   ∵ x可取任意实数,∴ 以0为中心选取x值,以1为间距取值,且取整数值,便于计算,又x取相反数时,相应的y值相同;

(2)描点  按照表中所列出的函数对应值,在平面直角坐标系中描出相应的7个点;

(3)边线  用平滑曲线顺次连接各点,即得所求y=x2的图象。

注意两点:

(1)由于我们只描出了7个点,但自矿业量取值范围是实数,故我们只画出了实际图象的一部分,即画出了在原点附近、自变量在-3到3这个区间的一部分。而图象在x>3或x

(2)所画的图象是近似的。

3.在原点附近较精确地研究二次函数y=x2的图象形状到底如何?——我们 –1与1之间每隔0.2的间距取x值表和图13-14。按课本P118内容讲解。

4.引入抛物线的概念。

关于抛物线的顶点应从两方面分析:一是从图象上看,y=x2的图象的顶点是最低点;一是从解析式y=x2看,当x=0时,y=x2取得最小值0,故抛物线y=x2的顶点是(0,0)。

 

小结

1.二次函数的定义。

(1)函数解析式关于自变量是整式;(2)函数自变量的最高次数是2。

2.二次函数y=x2的图象。

(1)其图象叫抛物线;(2)抛物线y=x2的对称轴是y轴,开口向上,顶点是原点。

 

补充例题

下列函数中,哪些是二次函数?哪些不是二次函数?若是二次函数,指出a,b,c?

(1)y=2-3x2;                    (2)y=x (x-4);

(3)y=1/2x2-3x-1;                (4)y=1/4x2+3x-8;

(5)y=7x(1-x)+4x2;            (6)y=(x-6)(6+x)。

 

四、教学注意问题

1.注意渗透局部和全体、有限和无限、近似和精确等矛盾对立统一的观点。

2.注意培养学生观察分析问题的能力。比如,结合所画二次函数y=x2的图象,要求学生思考:

(2)如何判断y=x2的图象有上面所说的特点?(答:由观察图象看出来;或由列表求值得出来;或由解析式y=x2看出来。)

二次函数复习课件 篇5

有幸参加初三复习课研讨,临听了张老师所做的《二次函数》一节复习示范课,听后收获颇多,反思很多,感动更多,收获的是她又把我带回丰富多彩的数学世界;反思的是面对中考和课改两大压力,数学课究竟怎么教;同时也为有这样优良素质的教师和务实教研的风气而感动。

作为一名有十几年从事数学工作的教师,我很欣赏张老师的教学风格,语言规范、声音清脆、情感充沛、思路清晰;引导简洁、激励到位、点拨准确、归纳具体;启发性大、针对性强、逻辑合理。课堂中即对二次函数的定义和三种解析式、图像和性质等双基的落实,特别是借助“八字”形象记忆法帮助学生理解性质很贴切,也引导学生经历从解析式到图像再到性质的数学过程,注重培养学生利用配方法进行函数解析式的演变,利用待定系数法结合所给条件,最佳选择方法求函数解析式,从而提高学生解决实际问题的能力,渗透数形结合思想。特别是关注中考热点、难点问题,如判别曲线与x轴的交点情况,a、b、c的符号与图像的情况。三个二次的关系,动点问题。听后很解渴,是一节上层的复习课。

但是我认为此课也有不足:一是教学节奏过快,中等以下的学生不一定跟上,由于是一课时,涉及二次函数的所有内容都要串上来,教师不得已采用了加快节奏的策略,尖子生能跟并理解,对大部分学生不利。二是个别基础点应该用基础题型夯实,如定义(a≠0)的利用,一般式变顶点式,确定对称轴、顶点。已知三点确定解析式等,使学生基本题型分必得。三是要是一轮复习的话,一课时内容较多,特别是那些难点、热点仅凭教师、学生一说而过恐怕不行,必须一个个敲定。

二次函数复习课件 篇6

听了茹老师上的复习课《二次函数图象与系数关系复习》。现在对茹老师进行一个点评,整节课听下来总体感觉是茹老师这节课能根据教材的内容、中考考点的要求和学生的实际,对课堂教学进行了精心设计,体现了教育教学改革的新理念,取得了良好的教学效果,是一节上的非常成功的复习课。

他的教学特点如下:

1、教学设计好,教学流程清楚,环节紧凑、流畅,由易到难,层次分明,知识梳理清晰,有个人的创新、独到之处,注重了基本数学方法的培养与基本数学思想的渗透,从函数解析式中字母系数作用到数形结合思想、分类讨论的思想,从一般到特殊的思考方法,让学生从整体、系统的角度领悟复习要求,从整体上处理教材复习内容,从系统上把握复习要求,整个设计把教学过程变成学生对知识的回顾过程,变成了学生自己探索提升的过程,让学生的能力得到了提高。

2、教学定位非常准。一是从教学设计上看,仅课前热身环节的填空题,就涉及所有二次函数图象与系数关系的所有考点,运用了数形结合思想,有效的唤醒了学生的记忆;二是通过练习教学,进一步夯实了双基,明确了各知识点的能力要求,熟练了通性通法,再加上各练习解决后的总结,让学生的思维品质有了提升;

3、茹老师上课不慌不忙,教态自然;上课能与学生的有效沟通,虽说上这节复习课时间紧,复习内容和知识点多,但他上课舍得把时间给学生去板演过程、去交流思考思路、去讲解解决问题过程;他充分让3、4号学生板书解题过程,充分放手让学生自己动手,动口,老师只引导点拨,使学生主动获取知识,在潜移默化中领悟知识,使学生完全成为课堂主人,达到知识学习与能力培养的统一,说明他善于启发调动学生学习的主动性,有较强的驾驭课堂的能力。

我的二点思考:

1、本节课让学生经历知识的回顾、归纳、运用、构建知识网络的过程。理解二次函数图象与系数关系的意义,体会a、b、c对二次函数图像的影响,体会数形之间的相互转化,并能在具体的问题中运用解决问题。同时,渗透多种数学思想方法,通过这节课的复习,起到了把旧的知识、遗忘的知识重新建立起来,把没有掌握的知识补上来,使新的意义确立和巩固,从而在全面了解的基础上开始学习,更加深化新学的知识内容,达到经过多次反复,逐步提高认识的层次。特别是让学生议、说、画、写,把课堂还给了学生,改变了复习课变成习题课、复习课成了题目评讲课的现状,值得借鉴。

2、由于九年级学生在数学方面更呈现分化较为严重的现象,为了能让好学生“既吃饱又吃好”、跟队生“吃得饱”,对于练习题的设计可以考虑不用一刀切,分层要求学生完成练习,跟队生完成较简单的基础题,优等生补充一些有难度的中考综合题,真正体现到分层优化。

二次函数复习课件 篇7

1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系,

2、理解二次函数与x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。

3、理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神

2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养合作交流意识。

1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根、两个相等的实根和没有实根。

3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

1、探索方程与函数之间的联系的过程。

2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系。

我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?

它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度。一个小球从地面被以40m/s 速度竖直向上抛起,小球的高度h(m)与运动时间t(s)的关系如下图所示,那么:(1)h 与t 的关系式是什么?

(2)小球经过多少秒后落地?你有几种求解方法?

小组交流,然后发表自己的看法。

学生交流:(1)h 与t 的关系式是h =-5t 2+v 0t +h 0,其中的v 0为40m/s,小球从地面抛起,所以h 0=0。把v 0,h 0带入上式即可求出h 与t 的关系式h =-5t 2+40t

(2)小球落地时h为0 ,所以只要令h =-5t 2+v 0t +h 0中的h=0求出t即可。也就是 -5t 2+40t=0 t 2-8t=0 ∴t(t-8)=0 ∴t=0或t=8

t=0时是小球没抛时的时间,t=8是小球落地时的时间,

也可以观察图像,从图像上可看到t=8时小球落地。

二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像如下图所示

(1)每个图像与x 轴有几个交点?

(2)一元二次方程x2+2x=0 , x2-2x+1=0有几个根?解方程验证一下, 一元二次方程x2-2x +2=0有根吗?

(3)二次函数的图像y=ax2+bx+c 与x 轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

学生讨论后,解答如下:

(1)二次函数①y=x2+2x ②y=x2-2x+1③y=x2-2x +2 的图像与x 轴分别有两个交点、一个交点,没有交点。

(2)一元二次方程x2+2x=0有两个根0,-2 ;x2-2x+1=0有两个相等的实数根1或一个根1 ;方程x2-2x +2=0没有实数根

(3)从图像和讨论知,二次函数y=x2+2x与x 轴有两个交点(0,0),(-2,0) ,方程x2+2x=0有两个根0,-2;

二次函数y=x2-2x+1的图像与x 轴有一个交点(1,0),方程 x2-2x+1=0有两个相等的实数根1或一个根1

二次函数y=x2-2x +2 的图像与x 轴没有交点, 方程x2-2x +2=0没有实数根

由此可知,二次函数y=ax2+bx+c 的图像与x 轴交点的横坐标即为一元二次方程ax2+bx+c=0的'根。

小结:

二次函数y=ax2+bx+c 的图像与x 轴交点有三种情况:有两个交点、一个交点、没有焦点。当二次函数y=ax2+bx+c 的图像与x 轴有交点时,交点的横坐标就是当y =0时自变量x 的值,即一元二次方程ax2+bx+c=0的根。

1、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标。

(1)y=6x2-2x+1 (2)y=-15x2+14x+8 (3)y=x2-4x+4

2、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是

3、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 。

4、已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p= ,q= 。

5. 已知抛物线 y=-2(x+1)2+8 ①求抛物线与y轴的交点坐标;②求抛物线与x轴的两个交点间的距离.

6、抛物线y=ax2+bx+c(a≠0)的图象全部在轴下方的条件是( )

(A) a0

(B) (C)a>0 b2-4ac>0 (D)a

在本节一开始的小球上抛问题中,何时小球离地面的高度是60 m?你是怎样知道的?

学生交流:在式子h =-5t 2+v 0t +h 0中v 0为40m/s, h 0=0,h=60 m,代入上式得

因此当小球离开地面2秒和6秒时,高度是60 m。

二次函数复习课件 篇8

我的《二次函数y=ax2的图象和性质》教案   二次函数的图像和性质是初中函数知识中非常重要的知识点,是一种经常用到的数学模型,因此是各地中考题中的热点,同时对学生来说又是一个学习难点。不少学生即使毕业了谈起初中数学学习还是觉得二次函数最难学。每次教到这部分我也是总想探究不同的教学方法,希望能帮助学生走出“二次函数最难学”的怪圈。良好的开端是成功的一半,因此二次函数y=ax2的图象和性质做为研究二次函数的图像和性质的第一课时是很重要的。因此在导入新课时我首先来了个温顾而知新,复习以前学过的一次函数与反比例函数的图像与性质。 一  温顾而知新: (1)正比例函数 一次函数y=kx+b(k ≠ 0)其图象是什么?具有什么样的性质?请结合图像说明。 (2)反比例函数y= k/x(k ≠ 0) 的图象是什么?具有什么样的性质?请结合图像说明。(3)我们以前 是怎么画出函数的图象的? 用 ( )法:分(  ),(  ),( )三个步骤。   二.新课探究(一):二次函数的图象又是什么呢?下面我们将同样用描点法在同一个坐标系中画出二次函数y=x2与y=-x2的图象。(必须让学生自己动手画图,这是非常重要的教学环节,学生只有通过自己的动手操作,才能更好的认识和体会二次函数的图像和性质。)给学生足够的规范画图的时间,对于画图有困难的学生要给与指导。在学生画完图后,组织学生观察所画图形,从形状、对称性与坐标轴的关系方面。小组内可以讨论交流各自的发现。然后让各小组谈自己的发现和结论。   教师点拨探究:认真观察我们所画的图象,我们可以发现二次函数的图象像我们生活中抛物体时形成的曲线。(教师可即时演示抛掷一个物体,让学生从感性认识抛出的物体所形成的轨迹)因此我们把它叫做抛物线,它有( )条对称轴,是( ),抛物线与它的对称轴的交点叫抛物线的顶点。交点在 ( ) 。 (让学生结合图形认识有关的概念。) 针对性练习  1.函数y=x2的图像叫( )它开口向 ( )  对称轴是(  ) 顶点坐标为 (  )   2.若抛物线y=ax2(a ≠ 0),过点(-1,3)。 (1)则a的值是 (  ) ; (2)对称轴是  (  ) ,开口 (  )。 (3)顶点坐标是 ( ),顶点是抛物线上的  (填“最高点”或“最低点”)。 探究活动(二):在同一个直角坐标系中画出观察  y=2x2 与y=-1/2x2的图象,并根据图像完成下列问题。(这一部分需要教师很好的点拨,结合学生所画图像,让学生通过点的坐标的变化从感性认识函数图像的增减性,即在对称轴的'两侧y值是如何随x值的变化而变化的。)   1.抛物线y=2x2的顶点坐标是 ( ),对称轴是 ( ),在对称轴的(  )侧,y随着x的增大而(  );在对称轴的( )侧,y随着x的增大而减小,当x= ( )时,函数y的值最小,最小值是(  ),抛物线y=2x2在x轴的 ( )方(除顶点外)。   2.抛物线y=--1/2x2在x轴的(  )方(除顶点外),在对称轴的左侧,y随着x的 (  );在对称轴的右侧,y随着x的( ),当x= ( )时,函数y的值最大,最大值是(  ),当x (  )0时,y”,“

二次函数复习课件 篇9

本节课选自华东师大版初中数学九年级下册第26章26、1的内容。函数是描述现实世界变化规律的数学模型。二次函数是基本的初等函数,也是初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,对二次函数的研究将为学生进一步学习后续函数、体会函数的思想奠定基础和积累经验。在学习了一次函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数的知识奠定基础。

教材在本节提出了两个求实际问题中变量最大值的问题。通过对实际问题的分析得到变量之间的数量关系,并对照函数的概念判断它们是否是函数,然后引导学生思考这些函数的共同特点,从而归纳得出二次函数的概念,一般形式。通过归纳具体函数的共同特点来定义二次函数的概念,体现了研究代数学问题的一般方法,同时在实际问题情境中体会二次函数的意义。

接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。九年级学生的思维已逐步从直观的形象思维向抽象的逻辑思维过渡。因此在教学中需要老师多加以引导,多发挥学生主观能动性,要求学生主动概括归纳二次函数的概念。

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

掌握二次函数的概念,体会二次函数的实际意义。

经历从实际问题中抽象为数学模型的过程,了解二次函数是刻画现实世界数量关系的又一个重要的数学模型,发展合情推理能力。

在自主参与活动的过程中,进一步体验学习成功带来的快乐。

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:二次函数的概念。教学难点是:二次函数概念的抽象概括过程。

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、自主探究等教学方法。

对数课件汇编


今天工作总结之家的编辑为大家准备了一篇非常不错的“对数课件”文章,请您耐心阅读本文。教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。编写好教案能够帮助教师更好地实现教育教学目标。

对数课件(篇1)

教学目标:

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:

2.求指数函数的反函数.

①;

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

3.图象的加深理解:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

对数课件(篇2)

“加强数学应用,形成和发展学生的数学应用意识”是新课标数学教育教学的基本理念之一.为了践行该教学理念,新课标实验教材(人教A版数学必修1)在安排学生系统学习了指数函数、对数函数、幂函数这些基本初等函数之后,特别将《函数的应用》独立成一章的内容,通过一些实例让学生感受函数的广泛应用,体会数学学习的价值所在.

《函数模型及其应用》是这一章的核心内容,是数学与生活相互衔接的枢纽.而“函数模型的应用实例”是上一节内容“几类不同增长的函数模型”的自然延续,让学生对数学知识的理解由抽象晦涩的式子走向直观鲜活的应用.本部分内容设置了四个例题,分别是行程问题、增长率问题、销售问题和体重问题,这几个例题在知识能力要求上又步步递进,越来越贴近生活实际:利用给定的函数模型解决问题(例4);建立确定性的函数模型解决问题(例3、例5);建立拟合函数模型解决实际问题(例6).

本部分内容课标要求两个课时完成,而本节课选取的是第二课时.通过教材中例题6的学习,要求学生能够对现实情境中采集的数据借助计算机或图形计算器进行观察分析,选择适当的函数模型来解决实际问题.该例题既能体现函数的作用,也让学生经历了把数学知识应用于生活实际的建模过程,既强化了学生应用数学的意识,也提高了学生应用数学的能力,增强了学生的数学素养.同时,该节课的内容为以后学生学习必修3的《线性相关关系》和选修部分的《回归分析》做了很好的铺垫.

根据课程标准的要求并结合本节课的内容和高一学生已具备的知识、能力和心理特点,确定本节课的教学目标为:

(1)能根据图表数据进行简单分析,能选择适当的函数模型解决实际问题;

(2)通过将实际问题转化为数学问题的过程,掌握数学建模的基本步骤.

(3)通过解决实际问题的过程,认识到生活处处皆数学,并感受到数学知识对实际问题的指导作用,体会数学的应用价值.

高一学生通过数学必修1前两章的学习,已经理解了函数的概念,掌握了一次函数、二次函数、指数函数、对数函数、幂函数等基本初等函数的图象和性质,对函数知识有了初步的应用能力.通过第三章的学习,学生了解了不同类型的函数的增长差异,这为本节课的学习奠定了知识基础.

但是学生的思维尚处于由直观感知到抽象分析的过渡阶段,数形结合和应用数学的意识不强.同时,运用数学知识解决实际问题,需要有一定的阅读理解、抽象概括、数据处理、语言转换等数学能力,而高一的学生数学能力较弱,往往不能深刻理解题意,不善于将实际问题抽象为一个数学问题来解决.因此,在教学中要引导学生进行数据分析,建立适当的模型并对模型进行简单的分析.

(1)分析表格数据,建立适当的函数模型;

(1)根据表格数据如何选择适当的函数模型;

教材中的例题6旨在结合生活中的实际问题,体现数学的应用价值,因此数据多且复杂。如果不借助于计算机和图形计算器,难以发现数据背后所隐藏的规律,也难以完成本题的计算.如果按教材那样选择两组数据求出函数解析式的方式处理,将无法得到让学生信服和满意的函数模型,也限制了学生的思维发展.而图形计算器可以很好的解决上述问题,给学生的自主探索提供可能,能大大激发学生的学习兴趣和求知的欲望.因此上课之前要求学生会使用图形计算器进行简单的数据分析、计算和拟合.

《函数模型的应用实例》这节内容包含三个方面:利用给定的函数模型解决问题,建立确定性的函数模型解决问题和建立拟合函数模型解决问题.在现实生活中,有很多现象涉及到两个变量之间的关系,又因为现实问题的复杂性,变量的变化规律往往受多种因素的影响,因此,实际问题多数需要建立拟合函数模型来近似处理.所以,本节课的内容对于刚进入高中阶段数学学习的高一同学来说,是认识数学的应用价值的绝佳的载体.

为了让学生更好的认识数学问题来源于实践,同时提升数学的应用数学的能力,本节课的内容是对教材例题做了大胆的改造,将课本上直接呈现的数据改成由学生去调查采集数据.在这一过程中感受数学的作用和提升用数学的能力,同时也激发他们学习的兴趣和主动性.由于数据繁多复杂,不好处理,因此本节课充分利用技术的优势,利用图形计算器方便的完成拟合函数的计算,并可以尽可能发挥学生的主观能动性,对函数模型作深入的探究和分析.

利用图形计算器,学生可以很容易的求解拟合函数,并且可以选择多种函数还进行拟合,这显示了在学习过程中手持技术的强大力量.但技术总归是技术,它无法代替结果背后所蕴含的对于我们来说更重要的思维活动,它无法代替我们对数学知识本身的理解和学习.因此,在课堂上我专门设置一些问题供同学们思考探究,指导学生比较不同模型的优劣,并引导学生去思考图形计算器是依据什么标准给我们计算出拟合函数,使得学生在感受到技术的力量的同时,也能认识到数学知识对技术的指导作用.

对数课件(篇3)

各位评委、老师们:大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:

一、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、教学目标设计:

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。

2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。

3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

三、教学重点、难点分析

1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点

2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。

四、说教法、学法

在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:

比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。

观察分析:让学生要学会观察问题,分析问题和解决新问题

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

五、教学媒体设计:

根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:

教师利用多媒体准备的素材①对数函数的图像②例题和习题③与本节课相关的结论

设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。

六、教学过程的设计:

环节一:引入课题,初步感知概念

1.知识回顾

1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?

设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.

2)对数的定义

设计意图:为讲解对数函数时对底数的限制做准备.

2.教学情景

由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数

环节二:新知探究,构建概念

(一)对数函数的概念

1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).

学生思考问题:①为什么对数函数概念中规定②对数函数对底数的限制:

设计意图:为学习对数函数的定义,图像和性质做铺垫(

(二)对数函数的图象和性质

教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。

探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)

环节三、典例分析,深化知识、

例1:

解:(略)

设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:

环节四、归纳小结,强化思想

本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。

环节五、作业布置(加深对知识的理解)

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正

对数课件(篇4)

本节课我采用实例引入的方法,设置了两个问题:第一问是已知底数和指数,求幂值,这是我们能解决的;第二问是已知底数和幂的值,求指数的问题。我们发现,用过去学过的知识,无法解这个方程,这就是引入我们这节课将要学的对数问题。同时介绍对数产生的背景及其应用,激发了学生的求知欲。通过实例引导学生发现问题、分析问题和解决问题,基本上达到了预期目标。接下来板书课题,并给出定义。定义的讲解注重理解,强调对数是一种求指数的运算,注意读法、写法等。定义之后,直接先讲解例1、例2,让学生熟悉指数式与对数式的互化。

然后通过一些特殊的指对数互化,比如任何非零的数的零次幂为1和任何数的一次幂为其本身,指导学生将这两个特殊的指数式转化成对数式,以此可以得到对数的性质。这样设计使得两个教学环节之间有所衔接,从上一个环节自然引入下一环节,这样展现给学生的课是一种水到渠成的感觉,不会使学生感觉太突兀。在讲到对数恒等式的证明的时候,整体替代的思想还需要加强。

接下来介绍两个特殊的对数。课后发现,效果不是很好,应该打开课本一起读课本,加深印象,再举一些简单的例子。

本节是关于对数概念的一节概念教学课,是在学生已经学习了指数的概念及运算法则的基础上学习的。因而我认为本节的重点是对数的定义,对数式与指数式的互化。难点是对对数概念的理解。为了突出重点、突破难点,我采用了分析讨论法、类比分析法、讲授法、发现法等,在教学中突出对数式与指数式的对比、正确与错误的'对比等,使学生加深理解概念,并配以相应的练习巩固,注重知识反馈。

本节课的成功之处在于课堂不再成为“一言堂”,学生也不再是教师注入知识的“容器瓶”,课堂上为学生的主动参与提供了充分的时间和空间,让不同程度的学生勇于发表自己的各种观点(无论对错),选出代表上黑板板演等做法,真正做到了“六让”:凡是学生能够自己学习的、观察的、讲的(口头表达)、思考探究的、合作交流的、动手操作的,尽量都放手让给学生去做、去活动、去完成,这样可以调动学生学习积极性,拉近师生距离,提高知识的可接受度,让学生体会到他们是学习的主体,进而完成知识的转化,变书本的知识、老师的知识成为自己的知识。

不足之处是:预习不是很充分,虽大部分同学完成的情况不错,但基础差点的同学完成的情况太糟糕,在预习时应多关注和帮助后进生。由于对数对他们来讲还是一个新的内容,对数的运算性质更是新上加新,导致学生在展示时显得略微胆怯,质疑也不够激烈,究其原因有两个:老师引导不够;运算过程结果唯一导致质疑点少。老师可适当设置些追问,也可让同学们展示错误等。另外学生在展示时,教师应多关注学生倾听和做笔记的情况,及时提醒提高课堂效率。

总体来说,这堂课的效果不错,多数学生能完成学习任务,每个学生都有不同程度的收获,通过作业反馈,学生基本上掌握了对数的概念。

对数课件(篇5)

[内容、地位]本节教材内容主要研究: ⑴对数函数的图象及其基本性质;⑵利用对数函数的图象及其性质来解决一些与对数有关的问题。这节教学内容是在学生学过函数的基本性质、指数、指数函数以及对数的基础上再来学习的,可以说它是上述内容的延续和发展,同时也为数学在实际应用中提供了一种新的函数模型。因此本节内容起到了一种承上启下的作用。

[编排依据]主要是从学生获取知识遵循“从特殊到一般,由浅入深,由易到难,循序渐进”的原则出发,符合学生的认知水平和接受能力。

根据对数函数及其相关知识历来在高考中的地位以及新课程标准的要求、学生的认知水平,确定教学目标如下:

(1)知识目标:使学生理解对数函数的定义并了解其图象的特点;

(2)能力目标:培养学生动手操作的能力以及自主探究数学问题的素养;

(3)德育目标:培养学生勇于探索和创新的精神以及优化他们的个性品质;

(4)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。

3。教学的重点、难点、关键: [重点]掌握对数函数的概念及其图象,使学生能初步自觉地、有意识地利用图象研究对数函数的性质。 [难点]理解和掌握对数函数的概念,图象特征,区分01和a1不同条件下的性质。 [关键]认识底数a与对数函数图象之间的关系。

教法:1、为了培养学生自主学习的能力以及使得不同层次的学生都能获得相应的满足。因此本节课采用探究性教学、提问式教学和分层教学。2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,同时也为了培养学生的动手操作能力,所以采用计算机辅助教学,以突出重点和突破难点。

学法:为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法:

(3)巩固反馈法:检验知识的应用情况,找出未掌握的内容及其差距。

1通过flash软件直观的呈现出对数函数的图象,使学生对其有丰富的感性认识;

1、导入新课:

由2。2。1的例题6(即考古学家是如何估算出土文物或古遗址的年代)引入,让学生利用计算器计算并填写下表。略

对数课件(篇6)

1.设a=log54,b=(log53)2,c=log45,则( )

解析:选D.a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c.

2.已知f(x)=logax-1在(0,1)上递减,那么f(x)在(1,+∞)上( )

x∈(0,1)时,u=x-1为减函数,∴a>1.

∴x∈(1,+∞)时,u=x-1为增函数,无最大值.

∴f(x)=loga(x-1)为增函数,无最大值.

3.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为( )

解析:选C.由题可知函数f(x)=ax+logax在[1,2]上是单调函数,所以其最大值与最小值之和为f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2.

4.函数y=log13(-x2+4x+12)的单调递减区间是________.

解析:y=log13u,u=-x2+4x+12.

令u=-x2+4x+12>0,得-2∴x∈(-2,2]时,u=-x2+4x+12为增函数,∴y=log13(-x2+4x+12)为减函数.解析:选B.当a>1时,loga2<logaa,∴a>2;当0<a<1时,loga2<0成立,故选B.解析:选B.∵loga2∴03.已知函数f(x)=2log12x的值域为[-1,1],则函数f(x)的定义域是( )A.[22,2] B.[-1,1]解析:选A.函数f(x)=2log12x在(0,+∞)上为减函数,则-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m解得22≤x≤2.4.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和为a,则a的`值为( )解析:选B.当a>1时,a+loga2+1=a,loga2=-1,a=12,与a>1矛盾;当0<a<1时,1+a+loga2=a,loga2=-1,a=12.解析:选A.当a>1时,y=logat为增函数,t=(a-1)x+1为增函数,∴f(x)=loga[(a-1)x+1]为增函数;当0<a<1时,y=logat为减函数,t=(a-1)x+1为减函数,∴f(x)=loga[(a-1)x+1]为增函数.6.(高考全国卷Ⅱ)设a=lge,b=(lg e)2,c=lg e,则( )解析:选B.∵1∴0∵0又c-b=12lg e-(lg e)2=12lg e(1-2lg e)=12lg elg10e2>0,∴c>b,故选B.7.已知0<a<1,0<b<1,如果alogb(x-3)<1,则x的取值范围是________.解析:∵0<a<1,alogb(x-3)<1,∴logb(x-3)>0.又∵0<b<1,∴0<x-3<1,即3<x<4.8.f(x)=log21+xa-x的图象关于原点对称,则实数a的值为________.log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,所以1-x2a2-x2=1a=1(负根舍去).9.函数y=logax在[2,+∞)上恒有y>1,则a取值范围是________.解析:若a>1,x∈[2,+∞),y=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),y=-logax≥-loga2,即-loga2>1,∴a>12,∴12<a<1.10.已知f(x)=6-ax-4ax1.又当x0,∴a

对数课件(篇7)

难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透数形结合、分类讨论等数学思想方法;

(4)用探究性教学、提问式教学和分层教学。

2、教学手段:

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的'方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。

例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。

例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法;

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

对数课件(篇8)

1.数学总是在不断的发明创造中去解决所遇到的问题。

2.方程 的根是多少?;

①.这样的数 存在却无法写出来?怎么办呢?你怎样向别人介绍一个人? 描述出来。

②..那么这个写不出来的数是一个什么样的数呢? 怎样描述呢?

①我们发明了新的公认符号 “ ”作为这样数的“标志” 的形式.即 是一个平方等于三的数.

3.方程 的根又是多少?① 也存在却无法写出来??同样也发明了新的.公认符号 “ ”专门作为这样数的标志, 的形式.

即 是一个2为底结果等于3的数.

(5)负分数指数幂: ( 6 )0的正分数指数幂等于0,负分指数幂没意义.

2.根式:

(1)如果一个数的n次方等于a, 那么这个数叫做a的n次方根.如果 ,那么x叫做a的次方根,则x= (2)0的任何次方根都是0,记作 . (3) 式子 叫做根式,n叫做根指数,a叫做被开方数.

(4) . (5)当n为奇数时, = . (6)当n为偶数时, = = .

3.指数幂的运算法则:

(1) = . (2) = . 3) = .4) = .

1.对数的定义:如果 ,那么数b叫做以a为底n的对数,记作 ,其中a叫做 , 叫做真数.

2.特殊对数:

(1) = (对数恒等式). (2) ; (3) ; (4) .

(5) = (6) = .(7) = .(8) = ; (9) =

对数课件(篇9)

本文题目:高一数学教案:对数及其运算教案

一、对数的概念

编写人:审稿人:

班级:姓名:小组:

一、学习目标

1)理解对数的概念;

2)能熟练地进行对数式与指数式的转化.

二、教学重点和教学难点

重点:对数的概念

难点:对对数概念的理解

三、知识链接

1.指数函数:(),,0

2.运算性质:

四.学习过程:

阅读课本,解答下面问题:

1、对数的定义:一般地,如果()的b次幂等于N,即,那么

数叫做以为底的对数,记作:.

其中叫做对数的,叫做.

2、把下列指数式写成对数式

①、②、③、

3、把下列对数式写成指数式

①、;②;③;

阅读课本,解答下面问题:

4、特殊对数

通常以为底的对数叫常用对数,并把简记作

在科学技术中常使用以无理数为底的对数,以为底的对数称为自然对数,并把简记作.

如:;.

5、根据对数式与指数式的关系,填写下表中空白处的名称.

式子名称

指数式

对数式

6、思考交流

对数课件(篇10)

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的.知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

难点:对数函数性质中对于在两种情况函数值的不同变化。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)渗透数形结合、分类讨论等数学思想方法。

(4)用探究性教学、提问式教学和分层教学。

2、教学手段:

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

研究对数函数的图像与性质。关键是学生自主的对函数和的图像分析归纳,引导学生填写表格(该表格一列填有在及两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

例1主要利用对数函数的定义域是来求解。

例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数及两种情况。

例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法。

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

"复数课件"延伸阅读